NANOPERFORATION TECHNOLOGY AND FUNCTIONAL PROPERTIES OF COPPER STRUCTURED MATERIALS IN THE PROCESS OF GLUCOSE ANODIC OXIDATION
Abstract
The paper presents an original technology for the synthesis of nanostructured copper electrodes by the method of replicas from metallic aluminum nanomatrices on a pilot high-voltage galvanic installation. The technological scheme used makes it possible to carry out the process of continuous high-voltage microplasma perforation of a metal tape with the formation of nanopores of a given size in the range from 20 to 500 nm at a variable voltage. To study the received replicas, a series of indicator electrodes with a working surface made of replica material was created. Cold rolled copper foil was used as a reference material for the electrode. The visible area of the working surface of the manufactured electrodes was examined using a scanning electron microscope. By the method of cyclic voltammetry, the coefficient of increase in the specific surface area was determined by increasing the peak area corresponding to the reduction of the surface film of copper oxide formed on the surface of the copper electrode in an alkaline medium at positive potentials. For a smooth copper electrode, the surface area was 0.071 mm2. For a nanostructured electrode of the same size, the total surface area was calculated with respect to the ar-eas of current peaks corresponding to the reduction of the surface film of copper (II) oxide on the surface of a mas-sive copper electrode and a nano-porous copper electrode. It was found that the catalytic activity, estimated by the magnitude of the current associated with the oxidation of the model substrate – glucose, is approximately 10 times higher than the increase in activity due to the total surface of copper. The anomalous catalytic effect is discussed from the point of view of increasing the local electric field strength due to the high curvature of the surface of nan-ofibers and from the point of view of changing the conditions of diffusion of the substrate to the electrode surface due to nanostructuring.