5-17 p.
This paper presents an analysis of the influence of technological parameters such as temperature, basicity and carbon content on the degree of desulfuration (removal of sulfur) during agglomeration of iron ore raw materials, which in the future will help to detect and calculate the most effective mode of operation of firing conveyor and sintering machines during heat treatment and processing of mineral iron ore raw materials. It was found that the most significant effect on the desulfurization of fluxed sulfate-containing charges is to reduce the size of the ore and the introduction of fusible additives that reduce the viscosity of the slag. It was revealed that the effect of the first factor is limited by the capabilities of crushing departments of mining and processing plants and the difficulties of sintering fine-grained charges, and a decrease in the fusibility of the sintering charge can lead to a deterioration of combustion processes and a drop in the technical and economic indicators of the sintering process. Gorenje It was found that the implementation of additional measures to obtain low-sulfur agglomerate from sulfate-containing ores is hampered by the lack of research on the kinetics of the main reactions that determine the final sulfur content in the agglomerate. It has been shown that dissociation of calcium and barium sulfates in contact with silicon, iron and aluminum oxides is possible at temperatures of 1000-1100°C. It was found that the dissociation of sulfates proceeds at a rate that ensures an increase in the degree of desulfuration. A decrease in the degree of desulfurization is observed in the temperature range of1200-1300°C, due to liquid-phase contact with silicon, iron and aluminum oxides. It was found that further studies of the kinetics of thermally activated reactions of high-temperature dissociation of barite and calcium sulfate under conditions close to agglomeration processes in operating heat treatment units of iron ore raw materials are necessary to increase the degree of desulfuration of sulfate-containing fluxed agglomeration charges.
1. Cirlin A.M., Gagarina L.G., Balunov A.I. Sintez teploobmennyh sistem, integrirovannyh s tehnologicheskim processom. Teoreticheskie osnovy himicheskoj tehnologii. 2021. T. 55. № 3. S. 347 – 358.
2. Li, J., An, H.-F., Liu, W.-X., Yang, A.-M., Chu, M.-S. Effect of basicity on metallurgical properties of mag-nesium fluxed pellets. Journal of Iron and Steel Research International. 2020. № 27 (3). P. 239 – 247.
3. Meshalkin V.P., Orekhov V.A., Dli M.I., Bobkov V.I., Chistyakova T.B. Method to Calculate the Limiting and Optimal Conditions of the Chemical and Energy Engineering Process of Calcination of Lump and Pelletized Phosphate Ore Raw Materials on the Grate of a Traveling-Grate Roasting Machine. Theoretical Foundations of Chemical Engineering. 2023. Vol. 57. № 4. P. 450 – 458.
4. Puchkov A.Ju., Lobaneva E.I., Kultygin O.P. Algoritm prognozirovanija parametrov sistemy pererabotki othodov apatit-nefelinovyh rud. Prikladnaja informatika. 2022. T. 17. № 1. S. 55 – 68.
5. Meshalkin V.P., Bobko, V.I., Dli M.I., Fedulov A.S. Mathematical simulation of chemical and ener-gotechnological processes and procedures of coke fines burning in agglomerated layer. CIS Iron and Steel Review. 2020. № 19. P. 13 – 17.
6. Dli M.I., Vlasova E.A., Sokolov A.M., Morgunova E.V. Creation of a chemical-technological system digital twin using the Python language. Journal of Applied Informatics. 2021. Vol. 16. № 1 (91). P. 22 – 31.
7. Belyakov N.V., Nikolina N.V. Plant protection technologies: From advanced to innovative. Journal of Phys-ics: Conference Series. 2021. № 1942 (1). P. 012072.
8.. Meshalkin V.P, Bobkov V.I., Dli M.I., Garabadzhiu A.V., Panchenko S.V., Orekhov V.A. Experimental Studies of the Physicochemical Process of Heating Ore Phosphorites. Russian Journal of General Chemistry, 2023. Vol. 93. № 3. P. 686 – 693.
9. Puchkov A.Ju., Dli M.I., Prokimnov N.N., Shutova D.Ju. Mnogourovnevye algoritmy ocenki i prinjatija resh-enij po optimal'nomu upravleniju kompleksnoj sistemoj pererabotki melkodispersnogo rudnogo syr'ja. Prikladnaja informatika. 2022. T. 17. № 6. S. 102 – 121.
10. Zhu X., Ji Y. A digital twin–driven method for online quality control in process industry. International Jour-nal of Advanced Manufacturing Technology. 2022. № 119 (5-6). P. 3045 – 3064.
11. Orehov V.A. Matematicheskoe modelirovanie processov obrazovanija shlama v rudno-termicheskih pechah pri pererabotke fosfatnogo rudnogo syr'ja. Sovremennye naukoemkie tehnologii. 2023. № 7. S. 78 – 86.
12. Shekhovtsov V.V., Vlasov V.A., Skripnikova N.K., Semenovykh M.A. Structure Formation of Con-crete Systems Modified By Nonstandard Particles. Russian Physics Journal 2021. № 63 (9). P. 1590 – 1595.
13. Bobkov V.I., Dli M.I., Sokolov A.M., Rubin Y.B. Analysis of chemical-metallurgical agglomeration pro-cesses during charge sintering. CIS Iron and Steel Review. 2020. 20. P. 7 – 11.
14. Ming Yan, Xinnan Song, Jin Tian, Xuebin Lv, Ze Zhang, Xiaoyan Yu and Shuting Zhang. Construction of a New Type of Coal Moisture Control Device Based on the Characteristic of Indirect Drying Process of Coking Coal. Energies 2020. № 13 (16). P. 4162.
15. Tomtas P., Skwiot A., Sobiecka E., Obraniak A, Ławińska K., Olejnik T.P. Bench Tests and CFD Simula-tions of Liquid–Gas Phase Separation Modeling with Simultaneous Liquid Transport and Mechanical Foam De-struction. Energies. 2021. № 14 (6). P. 1740.
16. Derevjanko M.S., Kondrat'ev A.V. Issledovanie fazovyh prevrashhenij i termodinamicheskih svojstv oksid-nyh system. Izvestija vysshih uchebnyh zavedenij. Chernaja metallurgija. 2022. T. 65. № 3. S. 188 – 189.
17. Nayak D., Ray N., Dash N., (...), Pati S., De P.S. Induration aspects of low-grade ilmenite pellets: Optimiza-tion of oxidation parameters and characterization for direct reduction application. Powder Technology. 2021. 380. P. 408 – 420.
18. Li J., An H.-F., Liu W.-X., Yang A.-M., Chu M.-S. Effect of basicity on metallurgical properties of magne-sium fluxed pellets. Journal of Iron and Steel Research International. 2020. № 27 (3). P. 239 – 247.
19. Puchkov A.Ju., Sokolov A.M., Fedotov V.V. Nejrosetevoj metod analiza processov termicheskoj obrabotki okomkovannogo fosfatnogo rudnogo syr'ja. Prikladnaja informatika. 2022. T. 17. № 5. S. 62 – 76.
20. Kossoy A. Effect of thermal inertia-induced distortions of DSC data on the correctness of the kinetics evalu-ated. Journal of Thermal Analysis and Calorimetry. 2021. T. 143. № 1. S. 599 – 608.
21. Wang S., Guo Y., Zheng F., Chen F., Yang L. Improvement of roasting and metallurgical properties of fluo-rine-bearing iron concentrate pellets. Powder Technology. 2020. 376, P. 126-135.
22. Tian Y., Qin, G., Zhang Y., Zhao L., Yang T. Experimental research on pellet production with boron-containing concentrate. Characterization of Minerals, Metals, and Materials. 2020. P. 91 – 102.
23. Tian H., Pan J., Zhu D., Wang D., Xue Y. Utilization of Ground Sinter Feed for Oxidized Pellet Production and Its Effect on Pellet Consolidation and Metallurgical Properties. Minerals, Metals and Materials Series. 11th International Symposium on High-Temperature Metallurgical Processing. 2020. P. 857 – 866.
24. Orehov V.A. Cifrovizirovannoe mnogomasshtabnoe modelirovanie teplo-tehnologicheskih rudovosstanov-itel'nyh processov v jelektrotermicheskoj fosfornoj pechi. Jenergobezopasnost' i jenergosberezhenie. 2023. № 4. S. 31 – 35.
25. Matkarimov S.T., Berdiyarov B.T., Yusupkhodjayev A.A. Technological parameters of the process of pro-ducing metallized iron concentrates from poor raw material. International Journal of Innovative Technology and Exploring Engineering. 2019. № 8 (11). P. 600 – 603.
2. Li, J., An, H.-F., Liu, W.-X., Yang, A.-M., Chu, M.-S. Effect of basicity on metallurgical properties of mag-nesium fluxed pellets. Journal of Iron and Steel Research International. 2020. № 27 (3). P. 239 – 247.
3. Meshalkin V.P., Orekhov V.A., Dli M.I., Bobkov V.I., Chistyakova T.B. Method to Calculate the Limiting and Optimal Conditions of the Chemical and Energy Engineering Process of Calcination of Lump and Pelletized Phosphate Ore Raw Materials on the Grate of a Traveling-Grate Roasting Machine. Theoretical Foundations of Chemical Engineering. 2023. Vol. 57. № 4. P. 450 – 458.
4. Puchkov A.Ju., Lobaneva E.I., Kultygin O.P. Algoritm prognozirovanija parametrov sistemy pererabotki othodov apatit-nefelinovyh rud. Prikladnaja informatika. 2022. T. 17. № 1. S. 55 – 68.
5. Meshalkin V.P., Bobko, V.I., Dli M.I., Fedulov A.S. Mathematical simulation of chemical and ener-gotechnological processes and procedures of coke fines burning in agglomerated layer. CIS Iron and Steel Review. 2020. № 19. P. 13 – 17.
6. Dli M.I., Vlasova E.A., Sokolov A.M., Morgunova E.V. Creation of a chemical-technological system digital twin using the Python language. Journal of Applied Informatics. 2021. Vol. 16. № 1 (91). P. 22 – 31.
7. Belyakov N.V., Nikolina N.V. Plant protection technologies: From advanced to innovative. Journal of Phys-ics: Conference Series. 2021. № 1942 (1). P. 012072.
8.. Meshalkin V.P, Bobkov V.I., Dli M.I., Garabadzhiu A.V., Panchenko S.V., Orekhov V.A. Experimental Studies of the Physicochemical Process of Heating Ore Phosphorites. Russian Journal of General Chemistry, 2023. Vol. 93. № 3. P. 686 – 693.
9. Puchkov A.Ju., Dli M.I., Prokimnov N.N., Shutova D.Ju. Mnogourovnevye algoritmy ocenki i prinjatija resh-enij po optimal'nomu upravleniju kompleksnoj sistemoj pererabotki melkodispersnogo rudnogo syr'ja. Prikladnaja informatika. 2022. T. 17. № 6. S. 102 – 121.
10. Zhu X., Ji Y. A digital twin–driven method for online quality control in process industry. International Jour-nal of Advanced Manufacturing Technology. 2022. № 119 (5-6). P. 3045 – 3064.
11. Orehov V.A. Matematicheskoe modelirovanie processov obrazovanija shlama v rudno-termicheskih pechah pri pererabotke fosfatnogo rudnogo syr'ja. Sovremennye naukoemkie tehnologii. 2023. № 7. S. 78 – 86.
12. Shekhovtsov V.V., Vlasov V.A., Skripnikova N.K., Semenovykh M.A. Structure Formation of Con-crete Systems Modified By Nonstandard Particles. Russian Physics Journal 2021. № 63 (9). P. 1590 – 1595.
13. Bobkov V.I., Dli M.I., Sokolov A.M., Rubin Y.B. Analysis of chemical-metallurgical agglomeration pro-cesses during charge sintering. CIS Iron and Steel Review. 2020. 20. P. 7 – 11.
14. Ming Yan, Xinnan Song, Jin Tian, Xuebin Lv, Ze Zhang, Xiaoyan Yu and Shuting Zhang. Construction of a New Type of Coal Moisture Control Device Based on the Characteristic of Indirect Drying Process of Coking Coal. Energies 2020. № 13 (16). P. 4162.
15. Tomtas P., Skwiot A., Sobiecka E., Obraniak A, Ławińska K., Olejnik T.P. Bench Tests and CFD Simula-tions of Liquid–Gas Phase Separation Modeling with Simultaneous Liquid Transport and Mechanical Foam De-struction. Energies. 2021. № 14 (6). P. 1740.
16. Derevjanko M.S., Kondrat'ev A.V. Issledovanie fazovyh prevrashhenij i termodinamicheskih svojstv oksid-nyh system. Izvestija vysshih uchebnyh zavedenij. Chernaja metallurgija. 2022. T. 65. № 3. S. 188 – 189.
17. Nayak D., Ray N., Dash N., (...), Pati S., De P.S. Induration aspects of low-grade ilmenite pellets: Optimiza-tion of oxidation parameters and characterization for direct reduction application. Powder Technology. 2021. 380. P. 408 – 420.
18. Li J., An H.-F., Liu W.-X., Yang A.-M., Chu M.-S. Effect of basicity on metallurgical properties of magne-sium fluxed pellets. Journal of Iron and Steel Research International. 2020. № 27 (3). P. 239 – 247.
19. Puchkov A.Ju., Sokolov A.M., Fedotov V.V. Nejrosetevoj metod analiza processov termicheskoj obrabotki okomkovannogo fosfatnogo rudnogo syr'ja. Prikladnaja informatika. 2022. T. 17. № 5. S. 62 – 76.
20. Kossoy A. Effect of thermal inertia-induced distortions of DSC data on the correctness of the kinetics evalu-ated. Journal of Thermal Analysis and Calorimetry. 2021. T. 143. № 1. S. 599 – 608.
21. Wang S., Guo Y., Zheng F., Chen F., Yang L. Improvement of roasting and metallurgical properties of fluo-rine-bearing iron concentrate pellets. Powder Technology. 2020. 376, P. 126-135.
22. Tian Y., Qin, G., Zhang Y., Zhao L., Yang T. Experimental research on pellet production with boron-containing concentrate. Characterization of Minerals, Metals, and Materials. 2020. P. 91 – 102.
23. Tian H., Pan J., Zhu D., Wang D., Xue Y. Utilization of Ground Sinter Feed for Oxidized Pellet Production and Its Effect on Pellet Consolidation and Metallurgical Properties. Minerals, Metals and Materials Series. 11th International Symposium on High-Temperature Metallurgical Processing. 2020. P. 857 – 866.
24. Orehov V.A. Cifrovizirovannoe mnogomasshtabnoe modelirovanie teplo-tehnologicheskih rudovosstanov-itel'nyh processov v jelektrotermicheskoj fosfornoj pechi. Jenergobezopasnost' i jenergosberezhenie. 2023. № 4. S. 31 – 35.
25. Matkarimov S.T., Berdiyarov B.T., Yusupkhodjayev A.A. Technological parameters of the process of pro-ducing metallized iron concentrates from poor raw material. International Journal of Innovative Technology and Exploring Engineering. 2019. № 8 (11). P. 600 – 603.
Bobkov V.I., Bykov A.A., Chernovalova M.V., Vasilkova M.A. Analysis of the effect of technological parameters on desulfurization of agglomeration charges. Chemical Bulletin. 2023. 6 (4). P. 5 – 17.