Improving the impact resistance of a polymer composite material based on epoxy prepreg through the addition of nonwoven material based on polyamide 12

https://doi.org/10.58224/2619-0575-2024-7-3-120-136
The effect of introducing nonwoven material based on polyamide PA 12-E on the mechanical properties of polymer composite materials based on the epoxy autoclave prepreg T107 was investigated. The presence of the nonwoven material slightly lowers the glass transition temperature to 171 ℃, which does not affect the feasibility of using the material up to the maximum operating temperature of 120 ℃. Electron microscopy studies of the composite's cross-sections revealed uniform distribution of the thermoplastic phase between the layers of carbon fabric as well as high adhesion of polyamide to the epoxy matrix. It was demonstrated that introducing nonwoven material does not lead to a reduction in the mechanical properties of the composites. The main advantage of composites based on nonwoven material is their enhanced resistance to impact loads. Under a free impact with energy of 6.67 J per 1 mm of the specimen, a through penetration with fiber destruction was observed in the sample without the nonwoven material, while for the sample with nonwoven material, the damage was characterized by delamination without fiber damage. The compressive strength after impact increased from 257 to 326 MPa with the introduction of nonwoven material. As a result, the proposed modification of commercial prepreg could expand the range of applications for the material and improve safety, particularly in aircraft structures.
1. Korolevich V.V. Prospects for the Use of Composite Materials in Mechanical Engineering and Aerospace Structures. Technological Independence of the Union State and Competitiveness. 2023. Vol. 2. P. 220 – 224.
2. Hegde S., Satish Shenoy B., Chethan K.N. Review on Carbon Fiber Reinforced Polymer (CFRP) and Their Mechanical Performance. Materials Today: Proceedings. 2019. Vol. 19. P. 658 – 662.
3. Zheng H., Zhang W., Li B., Zhu J., Wang C., Song G., Wu G., Yang X., Huang Y., Ma L. Recent Advances in Interphases in Carbon Fiber-Reinforced Polymer Composites: A Review. Composites Part B: Engineering. 2022. Vol. 233. P.109639.
4. Kalgin A.V., Kalinin Yu.E., Kudrin A.M., Malyuchenkov A.V., Panin Yu.V., Sitnikov A.V. Prospects for the Development of Production of Aircraft Parts from Polymer Composite Materials. Bulletin of the Voronezh State Technical University. 2011. Vol.7. P.146 – 153.
5. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Polymer Composite Materials for Structural Purposes with Functional Properties. Aviation Materials and Technologies. 2017. No.5. P. 405 – 419.
6. Valueva M.I., Gulyaev I.N. Review of Publications on the Development of Blades from Polymer Composite Materials for an Aircraft Engine Fan. Bulletin of Mechanical Engineering. 2019. No. 2 (306). P. 34 – 41.
7. Krylov V.D., Yakovlev N.O., Kurganova Yu.A., Lashov O.A. Interlaminar crack resistance of structural pol-ymer composite materials. Aviation materials and technologies. 2016. No. 1 (40). P. 79 – 85.
8. Li Y., Hori N., Arai M., Hu N., Liu Y., Fukunaga H. Improvement of interlaminar mechanical properties of CFRP laminates using VGCF. Composites Part A: Applied Science and Manufacturing. 2009. Vol. 40, No. 12. P. 2004 – 2012.
9. Li H., Chen W., Xu J., Li J., Gan L., Chu X., Yao Y., He Y., Li B., Kang F., Du H. Enhanced thermal con-ductivity by combined fillers in polymer composites. Thermochimica Acta. 2019. Vol. 676. P. 198 – 204.
10. Kolobkov A.S. Effect of nonwoven thermoplastic materials on the strength of layered polymer composites (review). Proceedings of VIAM. 2020. No. 9. P.44 – 51.
11. Zhang J., Wang Y., Wang X., Ding G., Pan Y., Xie H., Chen Q., Cheng R. Effects of amino-functionalized carbon nanotubes on the properties of amine-terminated butadiene-acrylonitrile rubber-toughened epoxy resins. Journal of Applied Polymer Science. 2014. Vol.131. No. 13. P. 1 – 7.
12. Newman B., Creighton C., Henderson L.C., Stojcevski F. A review of milled carbon fibers in composite ma-terials. Composites Part A: Applied Science and Manufacturing. 2022. Vol.163. P. 107249.
13. Dong J., Jia C., Wang M., Fang X., Wei H., Xie H., Zhang T., He J., Jiang Z., Huang Y. Improved mechani-cal properties of carbon fiber-reinforced epoxy composites by growing carbon black on carbon fiber surface. Com-posites Science and Technology. 2017. Vol. 149. P. 75 – 80.
14. Pappa E.J., Quinn J.J., Murray J.J., Davidson J.R., O'Bradaigh C.M., McCarthy E.D. Experimental study on the interlaminar fracture properties of carbon fiber reinforced polymer composites with a single embedded tough-ened film. Polymers. 2021. Vol.13. No. 23.
15. Sohn M.S., Hu X.Z. Mode II delamination toughness of carbon-fibre/epoxy composites with chopped Kevlar fibre reinforcement. Composites Science and Technology. 1994. Vol. 52. No. 3. P. 439 – 448.
16. Kutovaya I.V., Polyakova D.I., Erdni-Goryaev E.M., Lipatov Ya.V., Afanasyeva E.S., Morozov O.S., Bab-kin A.V., Kempan A.V. Increasing crack resistance of carbon-fiber-reinforced plastics based on phthalonitriles by introducing nonwoven polyamide materials. High-molecular compounds. Series B. 2023. Vol. 65. No. 5. P. 363 – 371.
17. Kutovaya I.V., Aleksanova A.A., Erdni-Goryaev E.M., Lipatov Ya.V., Afanasyeva E.S., Morozov O.S., Babkin A.V., Kempan A.V. Increasing the crack resistance of carbon fiber reinforced plastics by introducing a thermoplastic phase into the epoxy matrix. Journal of Applied Chemistry. 2023. Vol. 96. No. 4. P. 403 – 412.
18. Meirbekov M.N., Ismailov M.B. The effect of rubber on the mechanical properties of epoxy resin and car-bon fiber (review). Bulletin of Mechanical Engineering. 2020. No. 1 (312). P. 11 – 21.
19. Vodovozov G.A., Marakhovsky K.M., Kostromina N.V., Osipchik V.S., Aristov V.M., Kravchenko T.P. Development of epoxy-rubber binders for the creation of reinforced composite materials. Plastics. 2017. No. 5-6. P. 9 – 13.
20. Kuznetsova V.A. Influence of elastomer modifier on the mechanical and viscoelastic properties of epoxy-rubber composites for erosion-resistant coatings. Protective and functional coatings. 2020. Vol. 2. No. 59. P.56 – 62.
21. Zhang J., Xie X. Influence of addition of silica particles on reaction-induced phase separation and properties of epoxy/PEI blends. Composites Part B: Engineering. 2011. Vol.42, No. 8. P. 2163 – 2169.
22. Zhou S., Chen Z., Tusiime R., Cheng C., Sun Z., Xu L., Liu Y., Jiang M., Zhou J., Zhang H., Yu M. Highly improving the mechanical and thermal properties of epoxy resin via blending with polyetherketone cardo. Compo-sites Communications. 2019. Vol.13. P. 80 – 84.
23. Palazzetti R., Zucchelli A. Electrospun nanofibers as reinforcement for composite laminates materials – A review. Composites Structures. 2017. Vol. 182. P. 711 – 727.
24. Novikov G.V. Evaluation of interlayer crack resistance of reinforced layered PCMs by experimental and numerical methods: dis. … candidate of technical sciences: 05.16.09. M., 2020. 128 p.
25 . Mujika F., De Benito A., Fernandez B., Vazquez A., Llano-Ponte R., Mondragon I. Mechanical properties of carbon woven reinforced epoxy matrix composites. A study on the influence of matrix modifica-tion with poly-sulfone. Polymer Composites. 2002. Vol. 23, No. 3. P. 372 – 382.
26. Ramji A., Xu Y., Yasaee M., Grasso M., Webb P. Influence of veil interleave distribution on the de-lamination resistance of cross-ply CFRP laminates under low velocity impact. International Journal of Impact En-gineering. 2021. Vol.157. P. 103997.
27. Beylergil B., Tanoğlu M., Aktaş E. Effect of polyamide-6,6 (PA 66) nonwoven veils on the mechanical per-formance of carbon fiber/epoxy composites. Composites Structures. 2018. Vol. 194. P. 21 – 35.
28. Brugo T., Palazzetti R. The effect of thickness of Nylon 6.6 nanofibrous mat on Modes I–II fracture me-chanics of UD and woven composite laminates. Composites Structures. 2016. Vol. 154. P. 172 – 178.
29. Gulyaev A.I., Yakovlev N.O., Oreshko E.I. Fractography features of interlaminar crack growth in carbon fi-ber reinforced plastic under various loading modes. Proceedings of VIAM. 2019. No. 12. P. 99 – 108.
30. Kudrin A.M., Karaeva O.A., Gabriels K.S., Solopchenko A.V. Determination of the ultimate compressive strength of a polymer composite material after impact in accordance with ASTM D 7137. Bulletin of the Voronezh State Technical University. 2018. Vol. 14. No. 2. P. 164 – 169.
Kondratyeva A.A., Morozov O.S., Erdni-Goryaev E.M., Afanasyeva E.S., Babkin A.V., Kepman A.V., Avdeev V.V. Improving the impact resistance of a polymer composite material based on epoxy prepreg through the addition of nonwoven material based on polyamide 12. Chemical Bulletin. 2024. 7 (3). P. 120 – 136. https://doi.org/10.58224/2619-0575-2024-7-3-120-136