PREPARATION OF GLYCOLIC ACID USING ELECTRODIALYSIS

Every day, more and more talk about the problem of ecology. Oddly enough, this problem will not lose its relevance for a long time. Modern life is impossible without chemistry: its processes and products are used by all industries: both extractive, and manufacturing, and agriculture, and the service sector. The depletion of natural resources and the problem of waste led science to the conclusion: humanity needs to radically change industrial technologies in order to preserve the planet. Chemistry has to become green – as wasteless and environmentally friendly as possible. Since every year there are more and more enterprises that harm nature. Accordingly, it is necessary to deal radically with this problem, which as a result can open up new ways for the development of all industry. In most cases, each industry has ways to reduce harmful emissions and harm to the environment. To this end, more and more "cleaner" ways of obtaining products are being developed. The purpose of the article is to develop a method for producing glycolic acid by electrodialysis. This method enables to obtain glycolic acid in industrial quantities with high product yield and minimal environmental damage. As a result of the study, the technological scheme of the plant for converting sodium glycolate to glycolic acid was developed, equipment was selected, on the basis of technical and economic analysis, the following were estimated: cost of product, profitability of production and payback period.
1. Balandina A.G., Hangil'dii R.I., Ibragimov I.G., Martyasheva V.A. Razvitie membrannyh tekhnologij i vozmozhnost' ih primeneniya dlya ochistki stochnyh vod predpriyatij himii i neftekhimii. Neftegazovoe delo. 2015. № 5. S. 336 – 375
2. Kozaderova O.A., Niftaliev S.I., Kim K.B. Primenenie bipolyarnyh membran MB-2, modificirovannyh gidroksidom hroma (III), dlya konversii sul'fata natriya. Izvestiya VUZov. Himiya i himicheskaya tekhnologiya. 2019. № 3. S. 30 – 36.
3. Kratkij spravochnik fiziko-himicheskih velichin. sost.: N.M. Baron i dr.; pod red. A.A. Ravdelya i A.M. Ponomarevoj. 11-e izd., ispr. i dop. M.: TID "Az-book", 2009. 237 s.
4. Mel'nikov S.S. Razrabotka asimmetrichnyh bipolyarnyh membran i issledovanie ih elektrohimicheskih harakteristik: dis. ... kand. him. nauk: 02.00.05. Krasnodar, 2012. 198 s.
5. Mosin O.V. Fiziko-himicheskie osnovy opresneniya morskoj vody. Soznanie i fizicheskaya real'nost'. 2012. № 1. S. 19 – 30.
6. Nikolenko I.V., Kotovskaya E.E., Korol' I.V. Puti veroyatnosti ocenki effektivnosti pri osmose morskoj vody po tekhnologii obratnogo osmosa. Ekonomika stroitel'stva i prirodopol'zova-niya. 2017. № 3 (64). S. 80 – 87.
7. Osobennosti podgotovki vody obratnym osmosom. Predvaritel'naya podgotovka vody. Osmos. ULR: https://www.osmos.ru/prom/water_treatment/preliminary.html (data obrashcheniya: 04.01.2022)

8. Fedoseev A.N., Makarova A.S. Razrabotka tekhnologii immobilizacii rtuti v tekhnogennyh i kommunal'no-bytovyh othodah. Uspekhi v himii i himicheskoj tekhnologii. 2020. № 2 (225). S. 18 – 20.
9. Grundfos. Vodopodgotovka i oborudovanie Grundfos. M.: Grandfos, 2019. 145 s.
10. Song Y., Gao X., Gao C. Evaluation of scaling potential in a pilot-scale NF-SWRO integrated seawater desalination system. Journal of Membrane Science. 2013. № 443. P. 201 – 209.