SPECTRAL CHARACTERISTICS OF TRYPTOPHAN AND PHENYLALANINE COMPLEXES WITH MAGNESIUM (II) AND ZINC (II)

One of the main tasks of modern science is the search and synthesis of compounds with desired useful properties. Close attention should be paid to the study of mixed-ligand metal complexes containing metal ions and various ligands, which are biologically active molecules. In this work, the synthesis of complexes of phenylalanine and tryptophan with magnesium (II) and zinc (II) was carried out, some physical properties of the obtained substances were studied. The IR and UV spectra of the synthesized substances were obtained. In the IR spectra of the complexes, a shift and disappearance of some characteristic frequencies are observed. The disappearance of fluo-rescence, which is characteristic of individual amino acids, is observed in the UV spectra. An assumption has been put forward about the participation of metal in this effect. The physical properties of the synthesized substances have been studied, in particular, the melting points and the solubility of the complexes in water have been analyzed. There is a decrease in melting points compared to the starting materials, as well as a drop in solubility. Thus, the obtained results indicate the success of the synthesis of Mg(II) and Zn(II) metal complexes with phenylalanine and tryptophan. The practical significance of the synthesized substances lies in the use of metal complexes in medicine, agriculture and other branches of science and technology, as bioadditives, medicines or for physical research.
1. Malik M.A., Raza M.K., Dar O.A., Amadudin Abid M., Wani M.Y., Al-Bogami A.S., Hashmi A.A. Probing the antibacterial and anticancer potential of tryptamine based mixed ligand Schiff base ruthenium (III) complexes. Bioorganic Chem. 2019. Vol. 87. P. 773 – 782.
2. Mandal S., Das G., Askari H. Experimental and quantum chemical modeling studies of the interactions of L-Phenylalanine with divalent transition metal cations. J. Chem. Inf. Model. 2014. P. 54. P. 2524 – 2535
3. Mandal S., Das G., Askari H. A combined experimental and quantum mechanical investigation on some selected metal complexes of l-serine with first row transition metal cations. J. Mol. Struct. 2015. № 1081. P. 281 – 292
4. Remko M., Fitz D., Broer R., Rode B. M. Effect of metal Ions (Ni2+, Cu2+ and Zn2+) and water coor-dination on the structure of L-phenylalanine, L-tyrosine, L-tryptophan and their zwitterionic forms. J Mol Model. 2011. № 17. P. 3117 – 3128
5. Umadevi P., Senthilkumar L. Influence of metal ions (Zn 2+, Cu 2+, Ca 2+, Mg 2+ and Na+) on the water coordinated neutral and zwitterionic l-histidine dimer. RSC Adv. 2014. № 90. P. 49040-49052
6. Ivanov I.S., Troshin E.I., Krysenko Ju.G., Shishkin A.V., Kulikov A.N. Razrabotka metodik sinteza glicinatov nekotoryh mikrojelementov. Nauchno obosnovannye tehnologii intensifikacii sel'skohozjajstvennogo proizvodstva: materialy Mezhdunarodnoj nauchno-prakticheskoj konferencii. 2017. T. 2. S. 22 – 24.
7. Laila H., Abdel-Rahman Ahmed M., Abu-Dief Nabawia M., Ismail & Mohamed Ismael. Synthesis, characterization, and biological activity of new mixed ligand transition metal complexes of glutamine, glutaric, and glutamic acid with nitrogen based ligands. Inorganic and Nano-Metal Chemistry. 2017. Vol. 47. № 3. P. 467 – 480.
8. Gou Y., Li J., Fan B., Xu B., Zhou M., Yang F. Structure and biological properties of mixedligand Cu (II) Schiff base complexes as potential anticancer agents. European Journal of Medicinal Chemistry. 2017. Vol. 134. P. 207 – 217.
9. Pulatova Z.M., Sarymzakova B.K., Jeralieva M.G., Sarymzakova R.K. Sintez biologicheski aktivnyh veshhestv na osnove aminokislot i biometallov: Cu, Co i Zn. Prioritetnye napravlenija razvitija nauki i obrazovanija. 2018. S. 26 – 29.
10. Foulkes E.C. Transport of toxic heavy metals across cell membranes. Proceedings of the Society for Experimental Biology and Medicine. 2000. № 223. P. 234 – 240.
11. Peshkova T.V., Peshkov S.A. Vlijanie kationa olova v kompleksah s aminokislotami na process generacii singletnogo kisloroda. Uspehi sovremennogo estestvoznanija. 2018. № 1. S. 7 – 12.
12. Pinzi L., Rastelli G. Molecular docking: Shifting paradigms in drug discovery. International journal of molecular sciences. 2019. T. 20. № 18. S. 4331.
13. Saikia S., Bordoloi M. Molecular docking: challenges, advances and its use in drug discovery perspective. Current drug targets. 2019. T. 20. № 5. S. 501 – 521.
14. Sutherland D.E.K., Stillman M.J. The "magic numbers" of metallothionein. Metallomics. 2011. Vol. 3. № 5. P. 444 – 463.
15. Peshkov S.A., Khursan S.L. Complexation of the Zn, Co, Cd, and Pb ions by metallothioneins: A QM/MM simulation. Computational and Theoretical Chemistry. 2017. T. 1106. S. 1 – 6.
16. Prech Je., Bjul'mann F., Affol'ter K. Opredelenie stroenija organicheskih soedinenij. Tablicy spektral'nyh dannyh = Structure Determination of Organic Compounds. Tables of Spectral Data: per. s angl. B.N. Tarasevicha. Binom. Laboratorija znanij, 2006. S. 251 – 318.
17. Tachaev M.V., Konoplev V.E. Kompleksnye soedinenija perehodnyh metallov s aminokislotami, purinovymi i pirimidinovymi osnovanijami. Moskva: Izd-vo VNIIGiM im. A.N. Kostjakova, 2017. 138 s.
18. Engel J., Kleemann A., Kutscher B., Reichert,D. Pharmaceutical Substances, 2009: Syntheses, Patents and Applications of the Most Relevant APIs. Georg Thieme Verlag, 2014. 1800 s.
19. Knunjanc I.L. Kratkaja himicheskaja jenciklopedija. Ripol Klassik, 2013. 638 s.