EXCESS HEAT CAPACITIES OF THREE-COMPONENT SYSTEMS AND THEIR ROLE IN THE CALCULATION OF THE HEAT BALANCE OF DISTILLATION

The work is devoted to the research of the influence of real values of the heat capacity of ternary mixtures on the energy consumption of the process in a distillation column. The results of the analysis of available reference experimental data for six ternary systems and their binary components are presented in the form of isoline diagrams of excess heat capacities. Additive and excess heat capacities of ternary mixtures, vapor-liquid equilibrium and different regimes, including those of extractive distillation, are calculated. It is shown that the dependences of the excess heat capacity on the composition of ternary mixtures are complex, and the use of real values makes it possible to estimate energy costs more correctly.
1. Diky V., Bazyleva A., Paulechka E., Magee J. W., et al. Validation of thermophysical data for scientific and engineering applications. J. Chem. Thermodynamics. 2019. 133. P. 208 – 222. https://doi.org/10.1016/j.jct.2019.01.029
2. Kabo G.J., Blokhin A.V., Paulechka E., Roganov G.N. et al. Thermodynamic properties of organic substances: Experiment, modeling, and technological applications. J. Chem. Thermodynamics. 2019. № 131. P. 225 – 246. https://doi.org/10.1016/j.jct.2018.10.025
3. Oscarson J.L., Rowley R.L., Wilding W.V., Izatt R.M. Industrial need for accurate thermophysical data and for reliable prediction methods. J. Therm. Anal. Calorim. 2008. № 92 (2). P. 465 – 470.
4. Arutjunov B.A., Arutjunov A.B. Termodinamika i svojstva veshhestv. M.: Moskovskij tehnologicheskij universitet (MIRJeA), 2016. 214 s.
5. Serafimov L.A. Thermodynamic and topological analysis of liquid-vapor phase equilibrium diagdams ahd problems of rectification of multicomponent mixtures. In: Mathematical methods in contemporary chemistry. Ed. Kuchanov S.I. New York: Gordon & Breach, 1996. R. 557 – 602.
6. Lin Mei-Jyun, Su Chie-Shaan, Yang Tsung-Mao, Li Jin-Shuh. Density and viscosity of binary mixtures of diethyl oxalate with ethanol, ethyl acetate, tetrahydrofuran, and toluene. Journal of the Chinese Institute of Engineers. 2019. № 42 (5). R. 420 – 427. https://doi:10.1080/02533839.2019.1598285
7. Lu Bai, Shu-Ni Li, Quan-Guo Zhai, Yu-Cheng Jiang, Man-Cheng Hu. Density, refractive index, and viscosity of binary systems composed of ionic liquids ([Cnmim]Cl, = 2, 4) and three dipolar aprotic solvents at T= 288.15–318.15 K. Chemical Papers. 2015. № 69 (10). R. 1378 – 1388. https://doi:10.1515/chempap-2015-0139
8. Raeva V.M., Zhuchkov V.I., Maljugin A.A., Frolkova A.K. Transportnye i termodinamicheskie svojstva smesej, obrazovannyh acetonitrilom, ciklogeksenom i ciklogeksanonom. Zhurnal fiz. himii. 2020. № 94 (4). S. 537 – 544.
9. Zhuchkov Valeriy, Raeva Valentina, Frolkova Alla. Densities and excess volumes of binary and ternary mixtures of N, N-dimethyl sulfoxide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone at T = (293.15, 313.15)K and atmospheric pressure. Chemical Data Cjllection. 2022. № 38, 100840. P. 1 – 14. https://doi.org/10.1016/j.cdc.2022.100840
10. Jóźwiaka M., Komudzińska M., Tyczyńska M., Marczak W., Jóźwiak A. Heat capacity of six glymes in N,N-dimethylformamide + water mixtures. Solvation of glymes. J. Molecular Liquids. 2022. P. 119624. https://doi.org/10.1016/j.molliq.2022.119624
11. Kun Hou, Ziwen Zhang, Sa Xue, Xiangyang Liu et al. Isobaric molar heat capacities of binary mixtures of diethyl carbonate and methyl caprate at high pressures. J. Chem. Eng. Data. 2022. № 67 (3). P. 661 – 668. https://doi.org/10.1021/acs.jced.1c00972
12. Torín-Ollarves G.A., Segovia J.J., Martín M.C., Villamañán M.A. Density, viscosity, and isobaric heat capacity of the mixture (1-butanol + 1-hexene). J. Chem. Eng. Data. 2013. № 58 (10). P. 2717 – 2723. https://doi:10.1021/je301301j
13. Zaripov Z.I., Aetov A.U., Nakipov R.R., Khairutdinov V.F. et al Isobaric heat capacity of the binary liquid (water + 1,2-propanediol) mixtures at high-temperatures and high-pressures. J. Chem. Thermody-namics. 2021. № 152. P. 106270. https://doi:10.1016/j.jct.2020.106270
14. Raeva V.M. Teploty isparenija binarnyh smesej. Vestnik MITHT. 2013. № 8 (1). S. 43 – 50.
15. Arutjunov B.A., Rytova E.V., Raeva V.M., Frolkova A.K. Metody rascheta teplot paroobrazovanija uglevodorodov i ih smesej v shirokom diapazone temperature. Teoreticheskie osnovy himicheskoj tehnologii. 2017. № 61 (5). S. 596 – 604.
16. Raeva V.M., Anisimov A.V., Ryzhkin D.A. Raschet jental'pij paroobrazovanija sistemy ben-zol−ciklogeksan. Izvestija Akademii nauk. Serija: himicheskaja. 2021. № 4. C. 715 – 721.
17. Raeva V.M., Frolkova A.K. Koncentracionnye zavisimosti izbytochnyh moljarnyh teploemkostej binarnyh rastvorov. Vestnik MITHT. 2009. 4 (4). S. 31 – 39.
18. Raeva V.M., Frolkova A.K., Arutjunov B.A., Serafimov L.A. Koncentracionnye zavisimosti izobarnoj teploemkosti binarnyh rastvorov i ee rol' v teplovyh raschetah. Teoreticheskie osnovy himicheskoj tehnologii. 2015. № 49 (5). S. 574 – 581.
19. Belousov V.P., Morachevskij A.G., Panov M.Ju. Teplovye svojstva rastvorov nejelektrolitov. L.: Himija. 1981.
20. Valencia J.L., Troncoso J., Peleteiro J., Carballo E., Romani L. Isobaric molar heat capacities of the ternary system dimethyl carbonate + p-xylene + n-decane. Fluid Phase Equilibria. 2005. № 232 (1-2). P. 207 – 213. https:// doi:10.1016/j.fluid.2005.03.026
21. Navarrete-Contreras S., Sánchez-Ibarra M., Barroso-Muñoz F. O., Hernández S., et al. Use of glycerol as entrainer in the dehydration of bioethanol using extractive batch distillation: Simulation and experimental studies. Chemical Engineering and Processing: Process Intensification. 2014. 77. P. 38 – 41. https:// doi:10.1016/j.cep.2014.01.003
22. Belousov V.P., Morachevskij A.G. Teploty smeshenija zhidkostej. L.: Himija. 1970. 256 s.
23. Zharov V.T., Serafimov L.A. Fiziko-himicheskie osnovy distilljacii i rektifikacii. M: Himija, 1975. 240 s.
24. Raeva V.M., Serafimov L.A., Stepanov V.N. Nelokal'nye zakonomernosti diagramm izolinij skaljarnyh svojstv gomogennyh trehkomponentnyh smesej. Zhurnal fiz. himii. 2011. № 85 (2). S. 605 – 612.
25. NIST Chemistry WebBook URL: https://webbook.nist.gov/