PHASE – AND STRUCTURAL FORMATION IN THE TIO2-AL-C SYSTEM IN THE SHS PROCESS

The aim of the work was to develop simpler and cheaper methods of obtaining materials based on titanium carbide, which are promising for use in high-temperature electric heaters.
For this purpose, a composite material based on titanium carbide and alumina with the use of titanium oxide, aluminum and soot as the starting components was obtained by self-propagating high-temperature synthesis. It has been established that the main stages of the synthesis process are the melting of the initial titanium and aluminum oxide, the reduction of titanium oxide by aluminum, the interaction of the reduction product of titanium oxide with carbon. The flow of a side reaction of reduction of titanium oxide by carbon can cause the formation of non-stoichiometric titanium carbide.
The additions of carbon, aluminum, titanium, manganese zirconium nickel and silicon to the phase composition, microstructure, electrical conductivity of the synthesis product, the degree of stoichiometry of titanium carbide were studied. Addition of carbon up to 10 wt. % increases the burning rate of the initial mixture, and the lattice parameter of the titanium carbide. The addition of carbon and manganese in excess of the stoichiometry allows a more complete flow of the process and allows improving the quality of the product due to a more complete removal of oxygen from the titanium carbide and increasing the specific conductivity of the resulting composite.
1. SHul'pekov A.M., Lyamina G.V., Kal'yanova T.V., Lepakova O.K., Maksimov YU.M. EHlektroprovodyashchie pokrytiya na osnove termostojkih soedinenij titana, poluchennyh metodom SVS // Izvestiya vuzov. Poroshkovaya metallurgiya i funkcional'nye pokrytiya. 2010. №2. S. 3 – 7.
2. EHlektroprovodyashchij kompozicionnyj material, shihta dlya ego polucheniya i ehlektroprovodyashchaya kompoziciya: pat. 2341839 Ros. Federaciya: MPK51 H01C7/00 / Lepakova O.K., Golobokov N.N., Kitler V.D., SHul'pekov A.M., Maksimov YU.M.; zayavitel' i patentoobladatel' Tomskij nauchnyj centr Sibirskogo otdeleniya Rossijskoj akademii nauk. № 2007140364/09: zayavl. 31.10.2007; opubl. 20.12.2008, Byul. № 35. 7 s.
3. EHlektroprovodyashchij kompozicionnyj material, shihta dlya ego polucheniya i ehlektroprovodyashchyaya kompoziciya: pat. 2390863 Ros. Federaciya: MPK51 H01C 7/00 H01B 1/00/ SHul'pekov A.M., CHuhlomina L.N., Maksimov YU.M.; zayavitel' i patentoobladatel' Tomskij nauchnyj centr Sibirskogo otdeleniya Rossijskoj akademii nauk. № 2009115231/09; zayavl. 21.04.2009; opubl. 27.05.2010, Byul. № 15. 8 s.
4. Ishkov A.V., Sagalakov A.M. EHlektroprovodnost' kompozitov s nestekhiometricheskimi soedine-niyami titana // Pis'ma v ZHTF, 2006. T. 32, vyp. 9. S. 18 – 22.
5. Kiparisov. S.S., Levinskij YU.V., Petrov A.P. Karbid titana: poluchenie, svojstva, primene-nie. M.: Metallurgiya, 1987. 215 s.
6. Koncepciya razvitiya SVS kak oblasti nauchno-tekhnicheskogo progressa. otv. red. A.G. Merzha-nov.CHernogolovka, Territoriya, 2003. 204 s.
7. Kobyakov V.P., Zozulya V.D., Sichinava M.A., i dr. Gorenie poroshkovoj smesi Fe2O3–TiO2–Al–C v rezhime SVS i struktura obrazuyushchihsya produktov // Fizika goreniya i vzryva. 2005. T. 41, №4. S. 60 – 66.
8. CHapskaya A.YU., Radishevskaya N.I., Kasackij N.G., Lepakova O.K., Golobokov N.N., Najborodenko YU.S., Vereshchagin V.I. Vliyanie hromsoderzhashchih dobavok na strukturu pigmentov shpinel'nogo tipa // Steklo i keramika. 2007. № 3. S. 19 – 20.
9. Zinyuk R.YU., Balykov A.G., Gavrilenko I.B. i dr. IK-spektroskopiya v himicheskoj tekhnologii. L.: Himiya, 1983. 160 s.
10. Kiseleva T.YU., Novakova A.A., Grigor'eva T.F., Barinova A.P., Vorsina I.A. Mekhanosintez nanokompozitov korundovaya keramika/intermetallid // Perspektivnye materialy. 2008. №8. S. 11 – 19.
11. Barabanov V.F. Sovremennye fizicheskie metody v geohimii. L.: Izdatel'stvo LGU, 1990. 391 s.
12. Boldyrev A.I. Infrakrasnye spektry mineralov. M: Nedra, 1976. 200 s.