Effect of nanostructure and surface morphology on Al2O3 coatings carried out during thermochemical treatment

The influence of thermochemical treatment of Al2O3 layers on their chemical composition, nanostructure, micromechanical and sclerometric properties, and surface morphology is presented. By anodizing in a three-component direct current electrolyte, oxide layers were obtained by means of an aluminum alloy EN AW-5251 (AlMg2). Thermochemical treatment was carried out directly in aqueous solutions of Na2SO4·10H2O and Na2Cr2O7·2H2O, as well as in water purified from mineral salts. A thermochemical treatment method is presented that transforms the surface structure of the layers (formation of a sublayer of Na2Cr2O7·2H2O and Na2SO4·10H2O) and significantly changes the thickness of the layers by 0.37 and 1.77 microns, respectively. It was revealed that thermochemical treatment in water led to the formation of a sublayer 0.63 microns thick. Micro-mechanical tests have shown an increase in the surface microhardness of layers in the case of their thermochemical treatment in water and Na2SO4·10H2O, as well as a decrease in layers modified in Na2Cr2O7·2H2O solution. The layer modified in Na2SO4·10H2O solution has the highest microhardness (7.1 GPa). Scratch tests indicate that thermochemically treated layers have better adhesive properties than the control layer. The optimal constancy with respect to scratches was demonstrated by the layer as a result of thermochemical treatment using a solution of 10H2O · Na2SO4 (the highest values for almost most critical loads), relates it to sliding contacts, which is provided with high load capacity and insignificant roughness.
1. GOST 9.302-88. Edinaja sistema zashhity ot korrozii i starenija. Pokrytija metallicheskie i nemetallicheskie neorganicheskie. Metody kontrolja. V kn.: Zashhita ot korrozii. Pokrytija metallicheskie i nemetallicheskie neor-ganicheskie. M.: Izd-vo standartov, 1990. 467 s.
2. Antipov V.V. Perspektivy razvitija aljuminievyh, magnievyh i titanovyh splavov dlja izdelij aviacionno-kosmicheskoj tehniki. Aviacionnye materialy i tehnologii. 2017. № 8. S. 186 – 194.
3. Dujunova V.A., Volkova E.F., Uridija Z.P., Trapeznikov A.V. Dinamika razvitija magnievyh i litejnyh alju-minievyh splavov. Aviacionnye materialy i tehnologii. 2017. № S. S. 225 – 241. https://doi.org/10.18577/2071-9140-2017-0-S-225-241
4. Kablov E.N. Iz chego sdelat' budushhee? Materialy novogo pokolenija, tehnologii ih sozdanija i pererabotki – osnova innovacij. Kryl'ja Rodiny. 2016. № 5. S. 8 – 18.
5. Kablov E.N., Antipov V.V., Oglodkova Ju.S., Oglodkov M.S. Opyt i perspektivy primenenija aljuminij-litievyh splavov v izdelijah aviacionnoj i kosmicheskoj tehniki. Metallurg. 2021. № 1. S. 62 – 70.
6. Ogorodov D.V., Trapeznikov A.V., Popov DA., Pentjuhin S.I. Razvitie litejnyh aljuminievyh splavov v VIAM (k 120-letiju so dnja rozhdenija I.F. Kolobneva). Trudy VIAM. 2017. №2 (50). S. 12. https://doi.org/10.18577/2307-6046-2017-0-2-12-12.
7. Kablov E.N., Dynin N.V., Benarieb I., Shhetinina I. D., Samohvalov S.V., Nerush S.V. Perspektivnye alju-minievye splavy dlja pajanyh konstrukcij aviacionnoj tehnik. Zagotovitel'nye proizvodstva v mashinostroenii. 2021. № 19 (4). S. 179 – 192.
8. Vishenkov S.A. Himicheskie i jelektrohimicheskie sposoby osazhdenija metallopokrytij. M.: Mashinostroenie, 1975. 312 s.
9. Hmeleva K.M., Kozlov I.A., Nikitin Ja.Ju., Nikiforov A.A. Sovremennye tendencii zashhitnyh gal'vanich-eskih pokrytij, rabotajushhih pri povyshennyh temperaturah (obzor). Trudy VIAM. 2020. № 12 (94). S. 08. https://doi.org/10.18577/2307-6046-2020-0-12-75-86
10. Mamaev V.I., Kudrjavcev V.N. Nikelirovanie: ucheb. posobie. M.: RHTU im. D.I. Mendeleeva, 2014. 192 s.
11. Mamaev V.I. Funkcional'naja gal'vanotehnika: ucheb. posobie. Kirov: VjatGU, 2013. 208 s.
12. Vernik S., Pinner P. Himicheskaja i jelektroliticheskaja obrabotka aljuminija i ego splavov. L.: Gos. sojuz-noe izd-vo sudostroit. prom-sti, 1960. 389 s.
13. Robertson S.G., Ritchie I.M. The role of iron (III) and tartrate in the zincate immersion process for plating aluminium. Journal of Applied Electrochemistry. 1997. № 27 (7). P. 799 – 804.
14. Takacs D., Sziraki L., Torok T.I. et al. Effects of pre-treatments on the corrosion properties of electroless Ni-P layers deposited on AlMg2 alloy // Surface and Coatings Technology. 2007. № 201. P. 4526 – 4535.
15. Delaunois F., Petitjean J.P., Lienard P., Jacob-Duliere M. Autocatalytic electroless nickel-boron plating on light alloys. Surface and Coatings Technology. 2000. № 124. P. 201 – 209.
16. Thurlow K.P. Electroless nickel plating on aluminium connectors. Transactions of the Institute of Metal Fin-ishing. 1989. № 67 (1). P. 82 – 86. https://doi.org/10.1080/00202967.1989.11870847
17. Sharma A.K. Gold plating on aluminium alloys for space applications. Transactions of the Institute of Metal Finishing. 1989. № 67. P. 87 – 88. https://doi.org/10.1080/00202967.1989.11870848
18. Electroplating on aluminium and its alloys: pat. GB 1007252A; filed 12.09.61; publ. 13.10.65.
19. Wyszynski A.E. An Immersion Alloy Pretreatment for Electroplating on Aluminium. Transactions of the In-stitute of Metal Finishing. 1967. № 45 (1). P. 147 – 154. https://doi.org/10.1080/00202967.1967.11870032
20. Burgess J. Electroplating onto aluminium and its alloys. Transactions of the Institute of Metal Finish-ing. 2019. № 97 (6). P. 285 – 288. https://doi.org/ 10.1080/00202967.2019.1675280
21. Mehdi Javidi, Hossein Fadaee Plasma electrolytic oxidation of 2024-T3 aluminum alloy and investigation on microstructure and wear behavior. Applied Surface Science. 2013. № 286. P. 212 – 219.
22. Kazem Babaei, Arash Fattah-alhosseini, Maryam Molaei The effects of carbon-based additives on corrosion and wear properties of Plasma electrolytic oxidation (PEO) coatings applied on Aluminum and its alloys: A review. Surfaces and Interfaces. 2020. № 21. P. 100677.
23. Jiaqiang H., Junsheng W., Mingshan Z., Kang min N. Susceptibility of lithium containing aluminum alloys to cracking during solidification. Materialia. 2019. № 5. P. 100203.
Medvedev D.L., Sedova N.A. Effect of nanostructure and surface morphology on Al2O3 coatings carried out during thermochemical treatment. Chemical Bulletin. 2023. 6 (3). P. 48 – 64.