5-18 p.
Objectives: to investigate the adsorption of k-carrageenan on the surface of chitosan at pH 7.4 and chitosan treated with dilute sulfuric acid solution (pH 2.5-2.7). To develop a method for obtaining the sol of the chitosan sulfate salt - chitosan sulfate (CX) and to investigate its stability in time depending on the use of various acids as precursors, and its increase with the addition of different concentrations of k–carrageenan.
Methods. To determine the viscosity of polymer solutions, their molecular weight and to study the adsorption of k-carrageenan on CX, the method of capillary viscometry was used. The assessment of the stability of the zones over time was carried out photometrically.
Results. The adsorption of k-carrageenan on chitosan and CX has been studied: experimental isotherms of k-carrageenan adsorption have been constructed.on the surfaces of chitosan and CX, the constants of the Langmuir equation are calculated and complete theoretical adsorption isotherms are constructed using them. A method for obtaining a CX hydrosol with a positive particle charge has been developed. The stability of CX sols in time both without additives and with additives of k-carrageenan in time has been studied.
Conclusions. The adsorption of k-carrageenan on chitosan and CX is monomolecular. The adsorption equilibrium constant is greater with the adsorption of k-carrageenan on the surface of CX, and the maximum adsorption value is greater with the adsorption on the surface of chitosan. Of the acids used as precursors, the sol obtained using citric acid has the greatest stability. With an additional additive to the sols of the protective colloid - k-carrageenan to sols obtained using hydrochloric acid and citric acid, the sol obtained with the use of hydrochloric acid and carrageenan additives in the range of 0.04-0.06% has the greatest aggregate stability.
Methods. To determine the viscosity of polymer solutions, their molecular weight and to study the adsorption of k-carrageenan on CX, the method of capillary viscometry was used. The assessment of the stability of the zones over time was carried out photometrically.
Results. The adsorption of k-carrageenan on chitosan and CX has been studied: experimental isotherms of k-carrageenan adsorption have been constructed.on the surfaces of chitosan and CX, the constants of the Langmuir equation are calculated and complete theoretical adsorption isotherms are constructed using them. A method for obtaining a CX hydrosol with a positive particle charge has been developed. The stability of CX sols in time both without additives and with additives of k-carrageenan in time has been studied.
Conclusions. The adsorption of k-carrageenan on chitosan and CX is monomolecular. The adsorption equilibrium constant is greater with the adsorption of k-carrageenan on the surface of CX, and the maximum adsorption value is greater with the adsorption on the surface of chitosan. Of the acids used as precursors, the sol obtained using citric acid has the greatest stability. With an additional additive to the sols of the protective colloid - k-carrageenan to sols obtained using hydrochloric acid and citric acid, the sol obtained with the use of hydrochloric acid and carrageenan additives in the range of 0.04-0.06% has the greatest aggregate stability.
1. Skrjabin K.G. (pod red.). Hitozan. M.: Centr Bioinzhenerija RAN, 2013. C. 5.
2. Samujlenko A.Ja. (red.). Biologicheski aktivnye veshhestva (hitozan i ego proizvodnye). Krasnodar: KubGAU, 2018. 329 s.
3. Varlamov V.P., Il'ina A.V., Shagdarova B.C., Lun'kov A.P., Mysjakina I.S. Hitin/hitozan i ego proizvodnye: fundamental'nye i prikladnye aspekty. Uspehi biologicheskoj himii. 2020. T. 60. C. 317 – 368.
4. Hvostov M.V., Tolstikova T.G., Borisov S.A., Dushkin A.V. Primenenie prirodnyh polisaharidov v farmacevtike. Bioorganicheskaja himija. 2019. T. 45. S. 563 – 575.
5. Azimov Zh.T., Oksengendler B.L., Turaeva N.N., Rashidova S.Sh. Vlijanie stroenija biopolimera hitozana na ego baktericidnuju aktivnost'. Vysokomol.soed. A. 2013. № 55 (2). S. 165 – 169.
6. Ignat'eva P.E., Zhavoronok E.S., Legon'kova O.A., Kedik S.A. Kompozicii na osnove vodnyh rastvorov hitozana i glutarovogo al'degida dlja jembolizacii krovenosnyh sosudov. Tonkie himicheskie tehnologii. 2019. № 14 (1). P. 25 – 31.
7. Gal'brajhl. S. Hitin i hitozan: stroenie, svojstva, primenenie. Sorosovskij obrazovatel'nyj zhurnal. 2012. № 7 (1). S. 52 – 55.
8. Hasnain M.S., Sarwar B., Nayak A.K. (ed). Chitosan in drug delivery. USA: Academic Press (Elsevier), 2021. P. 556.
9. Garg U., Chauhan S., Nagaich U., Jain N. Current advancec in chitosan nanoparticles based drug delivery and targeting. Adv.Pharm.Bull. 2019. Vol. 9. P. 195 – 204.
10. Li J., Cai Ch., Li J., Li J., Li J., Sun T., Wang L., Wu H., Yu G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules. 2018. Vol. 23 (10). P. 2661.
11. Parhi R. Drug delivery applications of chitin and chitosan: a review. Env. Chem. Let. 2020. Vol. 18. P. 577 – 594.
12. Mikušová V., Mikuš P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sc. 2021. Vol. 22. https://doi.org/10.3390/ijms22179652
13. Ghosh R., Mondal S., Mukherjee D., Adhikari A., Saleh A. A., Alsantali I., Khder A.S., Altass H.M., Moussa Z., Das R., Bhattacharyya M., Pal S.K. Oral drug delivery using a polymeric nanocarrier: chitosan nanoparticles in the delivery of rifampicin. Mater. Adv. 2022. Vol. 3. P. 4622 – 4628.
14. Radha D., Lal J.S., Devaky K.S. Chitosan‐Based Films in Drug Delivery Applications. Starch. 2022. Vol. 74 (7-8). https://doi.org/10.1039/D2MA00295G 10.1002/star.202100237
15. Herdiana Y., Wathoni N., Shamsuddin Sh., Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon. 2022. Vol. 8 (1). https://doi.org/10.1016/j.heliyon.2021.e08674
16. Bernkop-Schnürch A., Dünnhaupt S. Chitosan-based drug delivery systems. Europ.J.Pharm.Biopharm. 2012. Vol. 81. P. 463 – 469.
17. Lampreht A. (pod red.). Nanolekarstva. Koncepcii dostavki lekarstv v nanonauke. M.: Nauchnyj mir, 2010. 230 s.
18. Lau A. K.-T., Hussejn F., Dafdi H. (pod red.) Nano- i biokompozity. M.: BINOM. Laboratorija znanij. 2020. 390 s.
19. Povernov P.A., Shibrjaeva L.S., Ljusova L.R., Popov A.A. Sovremennye polimernye kompozcionnye materialy dlja kostnoj hirurgii: problemy i perspektivy. Tonkie himicheskie tehnologii. 2022. Vol. 17 (6). S. 514 – 536.
20. Lykoshin D.D., Zajcev V.V., Kostromina M.A., Esipov R.S. Osteoplasticheskie materialy novogo pokolenija na osnove biologicheskih i sinteticheskih matriksov. Tonkie himicheskie tehnolo-gii. 2021. Vol. 16 (1). P. 36 – 54.
21. Mayyas M.A. Al-Remawi, Properties of Chitosan Nanoparticles Formed Using Sulfate Anions as Crosslinking Bridges. American Journal of Applied Sciences. 2012. Vol. 9 (7). P. 1091 – 1092.
22. Mezina E.A., Lipatova I.M. Issledovanie processa obrazovanija dispersnoj fazy v smeshannyh rastvorah hitozana i sul'fata natrija. Zhurnal prikladnoj himii. 2014. T. 87. S. 821 – 827.
23. Mezina E.A., Lipatova I.M. Vlijanie peroksidnoj depolimerizacii hitozana na svojstva poluchaemyh iz nego hitozan-sul'fatnyh nanochastic. Zhurnal prikladnoj himii. 2015. № 88 (10). S. 1390 – 1395.
24. Zhang S., Zhang H., Li R., Xing Y. Morphology and adsorption properties of chitosan sulfate salt mi-crospheres prepared by a microwave-assisted method. The Royal Society of Chemistry. 2017. Vol. 7. P. 48189 – 48198.
25. Drozd N.N., Makarov V.A., Bashkov G.V. i dr. Vlijanie sovmestnogo vvedenija geparina i sernokislogo jefira hitozana na funkciju gemostaza. Jeksp. i klin. farmakol. 1996. № 59 (1). S. 30.
26. Czechowska-Biskup R.,Jarosińska D.,Rokita B. Determination of degree of deacetation of chitosan – Comparison of methods. Progress Chem. App. Chitin and its Derivatives. 2012. Vol. 7. P. 5 – 27.
27.Wang W., Bo Sh.,Li S., Qin W. Detrmination of the Mark-Houwink equation for chitosans with dif-ferent degrees of deacetylation. J. Biol. Macromol. 1991. Vol. 13. P. 281 – 285.
28. Distantina S., Wiratni, Fahrurrozi M., Rochmadi. Carrageenan properties extracted from Eucheuma cottonii, Indonesia. W. Acad. Sc, Eng.Tech. 2011. Vol. 54. P. 738 – 742.
29. Swain S.K., Deg R., Islam M., Airoldi C. Solution using aluminium-impregnated chitosan biopolymer. Separation Sc. Tech. 2009. № 44 (9). P. 2096 – 2116.
2. Samujlenko A.Ja. (red.). Biologicheski aktivnye veshhestva (hitozan i ego proizvodnye). Krasnodar: KubGAU, 2018. 329 s.
3. Varlamov V.P., Il'ina A.V., Shagdarova B.C., Lun'kov A.P., Mysjakina I.S. Hitin/hitozan i ego proizvodnye: fundamental'nye i prikladnye aspekty. Uspehi biologicheskoj himii. 2020. T. 60. C. 317 – 368.
4. Hvostov M.V., Tolstikova T.G., Borisov S.A., Dushkin A.V. Primenenie prirodnyh polisaharidov v farmacevtike. Bioorganicheskaja himija. 2019. T. 45. S. 563 – 575.
5. Azimov Zh.T., Oksengendler B.L., Turaeva N.N., Rashidova S.Sh. Vlijanie stroenija biopolimera hitozana na ego baktericidnuju aktivnost'. Vysokomol.soed. A. 2013. № 55 (2). S. 165 – 169.
6. Ignat'eva P.E., Zhavoronok E.S., Legon'kova O.A., Kedik S.A. Kompozicii na osnove vodnyh rastvorov hitozana i glutarovogo al'degida dlja jembolizacii krovenosnyh sosudov. Tonkie himicheskie tehnologii. 2019. № 14 (1). P. 25 – 31.
7. Gal'brajhl. S. Hitin i hitozan: stroenie, svojstva, primenenie. Sorosovskij obrazovatel'nyj zhurnal. 2012. № 7 (1). S. 52 – 55.
8. Hasnain M.S., Sarwar B., Nayak A.K. (ed). Chitosan in drug delivery. USA: Academic Press (Elsevier), 2021. P. 556.
9. Garg U., Chauhan S., Nagaich U., Jain N. Current advancec in chitosan nanoparticles based drug delivery and targeting. Adv.Pharm.Bull. 2019. Vol. 9. P. 195 – 204.
10. Li J., Cai Ch., Li J., Li J., Li J., Sun T., Wang L., Wu H., Yu G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules. 2018. Vol. 23 (10). P. 2661.
11. Parhi R. Drug delivery applications of chitin and chitosan: a review. Env. Chem. Let. 2020. Vol. 18. P. 577 – 594.
12. Mikušová V., Mikuš P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sc. 2021. Vol. 22. https://doi.org/10.3390/ijms22179652
13. Ghosh R., Mondal S., Mukherjee D., Adhikari A., Saleh A. A., Alsantali I., Khder A.S., Altass H.M., Moussa Z., Das R., Bhattacharyya M., Pal S.K. Oral drug delivery using a polymeric nanocarrier: chitosan nanoparticles in the delivery of rifampicin. Mater. Adv. 2022. Vol. 3. P. 4622 – 4628.
14. Radha D., Lal J.S., Devaky K.S. Chitosan‐Based Films in Drug Delivery Applications. Starch. 2022. Vol. 74 (7-8). https://doi.org/10.1039/D2MA00295G 10.1002/star.202100237
15. Herdiana Y., Wathoni N., Shamsuddin Sh., Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon. 2022. Vol. 8 (1). https://doi.org/10.1016/j.heliyon.2021.e08674
16. Bernkop-Schnürch A., Dünnhaupt S. Chitosan-based drug delivery systems. Europ.J.Pharm.Biopharm. 2012. Vol. 81. P. 463 – 469.
17. Lampreht A. (pod red.). Nanolekarstva. Koncepcii dostavki lekarstv v nanonauke. M.: Nauchnyj mir, 2010. 230 s.
18. Lau A. K.-T., Hussejn F., Dafdi H. (pod red.) Nano- i biokompozity. M.: BINOM. Laboratorija znanij. 2020. 390 s.
19. Povernov P.A., Shibrjaeva L.S., Ljusova L.R., Popov A.A. Sovremennye polimernye kompozcionnye materialy dlja kostnoj hirurgii: problemy i perspektivy. Tonkie himicheskie tehnologii. 2022. Vol. 17 (6). S. 514 – 536.
20. Lykoshin D.D., Zajcev V.V., Kostromina M.A., Esipov R.S. Osteoplasticheskie materialy novogo pokolenija na osnove biologicheskih i sinteticheskih matriksov. Tonkie himicheskie tehnolo-gii. 2021. Vol. 16 (1). P. 36 – 54.
21. Mayyas M.A. Al-Remawi, Properties of Chitosan Nanoparticles Formed Using Sulfate Anions as Crosslinking Bridges. American Journal of Applied Sciences. 2012. Vol. 9 (7). P. 1091 – 1092.
22. Mezina E.A., Lipatova I.M. Issledovanie processa obrazovanija dispersnoj fazy v smeshannyh rastvorah hitozana i sul'fata natrija. Zhurnal prikladnoj himii. 2014. T. 87. S. 821 – 827.
23. Mezina E.A., Lipatova I.M. Vlijanie peroksidnoj depolimerizacii hitozana na svojstva poluchaemyh iz nego hitozan-sul'fatnyh nanochastic. Zhurnal prikladnoj himii. 2015. № 88 (10). S. 1390 – 1395.
24. Zhang S., Zhang H., Li R., Xing Y. Morphology and adsorption properties of chitosan sulfate salt mi-crospheres prepared by a microwave-assisted method. The Royal Society of Chemistry. 2017. Vol. 7. P. 48189 – 48198.
25. Drozd N.N., Makarov V.A., Bashkov G.V. i dr. Vlijanie sovmestnogo vvedenija geparina i sernokislogo jefira hitozana na funkciju gemostaza. Jeksp. i klin. farmakol. 1996. № 59 (1). S. 30.
26. Czechowska-Biskup R.,Jarosińska D.,Rokita B. Determination of degree of deacetation of chitosan – Comparison of methods. Progress Chem. App. Chitin and its Derivatives. 2012. Vol. 7. P. 5 – 27.
27.Wang W., Bo Sh.,Li S., Qin W. Detrmination of the Mark-Houwink equation for chitosans with dif-ferent degrees of deacetylation. J. Biol. Macromol. 1991. Vol. 13. P. 281 – 285.
28. Distantina S., Wiratni, Fahrurrozi M., Rochmadi. Carrageenan properties extracted from Eucheuma cottonii, Indonesia. W. Acad. Sc, Eng.Tech. 2011. Vol. 54. P. 738 – 742.
29. Swain S.K., Deg R., Islam M., Airoldi C. Solution using aluminium-impregnated chitosan biopolymer. Separation Sc. Tech. 2009. № 44 (9). P. 2096 – 2116.
Erasov V.S., Maltseva Yu.O. Adsorption of kappa-carrageenan on the surface of chitosan and its sulfuric acid salt and stabilization of chitosan-sulfate nanoparticles by it. Chemical Bulletin. 2023. 6 (2). P. 5 – 18.