25-36 p.
Hybrid installations for converting fuel energy into electricity are a promising way to provide humanity with affordable energy resources. However, the issue of obtaining reagents (hydrogen and oxygen) with high purity remains one of the most urgent. In this work, the energy characteristics of a hydrogen-oxygen fuel cell in combination with a water electrolyzer were investigated. Membrane-electrode assemblies were formed consisting of a modified membrane based on polytetrafluoroethylene with a platinum-containing component (Pt(30%)/C), as well as an anode and cathode made of carbon fabric and porous nickel doped with technical carbon and graphene. The structural characteristics of the material were studied using the scanning electron microscopy method. For the first time the investigation of hydrogen-oxygen membrane-electrode assemblies energy characteristics was carried out on an automated electronic load AKIP-1375/1E with embedded software. In the developed hydrogen-oxygen fuel cell, a more affordable commercial polytetrafluoroethylene-based membrane was used as a solid polymer elec-trolyte instead of the Nafion membrane, which significantly reduced the cost of developed MEA. As a result of the tests carried out, it was found that the maximum specific power is demonstrated by elements constructed on the basis of an anode and a cathode made of porous nickel modified with graphene.
1. Goel M., Sen G. Climate Action and Hydrogen Economy: Technologies Shaping the Energy Transition, Springer, Singapore, 2024. 309 p.
2. Kumar S., Agarwal A.K., Khandelwal B., Singh P. Ammonia and Hydrogen for Green Energy Transition, Springer, Singapore, 2024. 392 p.
3. Xing Y. Modeling and Control Strategies for a Fuel Cell System, Springer Nature, Switzerland, 2023. 173 p.
4. Lebedeva M.V., Antropov A.P., Ragutkin A.V., Zaitsev N.K., Yashtulov N.A. Development of electrode na-nomaterials for alkaline electrolysis of water. Theoretical Foundations of Chemical Technology. 2021. T. 55. No. 5. P. 642 – 651.
5. Kumar S.S., Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy Reports. V. 8. No. 10. P. 13793 – 13813.
6. Park J. Kwon O., Oh H.-M., Jeong S., So Y., Park J., Jang H., Yang S., Baek J., Kim G., Park T. Optimizing design of catalyst layer structure with carbon-supported platinum weight ratio mixing method for pro-ton exchange membrane fuel cells. Energy. 2024. Vol. 291. P. 130363.
7. Lebedeva M.V., Krapivko A.L., Dulina O.A., Lensky M.S., Yashtulov N.A. Energy-efficient nanocomposite membrane-electrode units for chemical power sources. Chemical Bulletin. 2023. Vol. 6. No. 2. P. 19 – 28.
8. Yashtulov N.A., Zaitcev N.K., Lebedeva M.V., Patrikeev L.N. New polymer-graphene nanocomposite elec-trodes with platinum-palladium nanoparticles for chemical power sources. Express Polymer Letters. 2019. Vol. 13. No. 8. P. 739 – 748.
9. Lebedeva M.V., Ragutkin A.V., Sidorov I.M., Yashtulov N.A. Reducing hydrogen absorption of membrane-electrode unit materials for hydrogen generators. Fine chemical technologies. 2023. Vol. 18. No. 5. P. 461 – 470.
10. Lebedeva M.V., Antropov A.P., Ragutkin A.V., Yashtulov N.A. Development of prototypes of membrane-electrode units based on platinum nanocomposites for energy sources. Computational Nanotechnology. 2019. Vol. 6. No. 4. P. 56 – 59.
11. Antropov A.P., Lebedeva M.V., Ragutkin A.V., Zaitsev N.K., Yashtulov N.A. Energy efficiency of nano-composite membrane-electrode units for hydrogen generation. Bulletin of the Technological University. 2021. T. 24. No. 12. P. 73 – 78.
12. Krasnova A.O., Glebova N.V., Kastsova A.G., Pelageikina A.O., Redkov A.V., Tomkovich M.V., Nechi-tailov A.A. Stability of graphene/nafion composite in pem fc electrodes. Nanomaterials. 2024. Vol. 14. No. 11. P. 922.
13. Rey-Raap N., dos Santos-Gómez L., Arenillas A. Carbons for fuel cell energy generation. Carbon. 2024. V. 228. P. 11929. 14. Guterman V.E., Pustovaya L.E., Guterman A.V., Vysochina L.L. Borohydride synthesis of the Pt x -Ni/C electrocatalysts and investigation of their activity in the oxygen electroreduction reaction. Russian Journal of Electrochemistry. 2007. Vol. 43. No. 9. P. 1091 – 1096.
15. Antropov A.P., Ragutkin A.V., Lebedeva M.V., Yashtulov N.A. Nanocomposite micropower alternative en-ergy sources for electronic equipment. Thermal Power Engineering. 2021. No. 1. P. 21 – 29.
16. Lebedeva M.V., Antropov A.P., Golovacheva V.A., Erasov V.S., Yashtulov N.A. Metal-Polymer Functional Materials for Hydrogen-Oxygen Fuel Cells with Enhanced Performance. Applied Mechanics and Materials. 2023. Vol. 912. P. 101 – 106.
2. Kumar S., Agarwal A.K., Khandelwal B., Singh P. Ammonia and Hydrogen for Green Energy Transition, Springer, Singapore, 2024. 392 p.
3. Xing Y. Modeling and Control Strategies for a Fuel Cell System, Springer Nature, Switzerland, 2023. 173 p.
4. Lebedeva M.V., Antropov A.P., Ragutkin A.V., Zaitsev N.K., Yashtulov N.A. Development of electrode na-nomaterials for alkaline electrolysis of water. Theoretical Foundations of Chemical Technology. 2021. T. 55. No. 5. P. 642 – 651.
5. Kumar S.S., Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy Reports. V. 8. No. 10. P. 13793 – 13813.
6. Park J. Kwon O., Oh H.-M., Jeong S., So Y., Park J., Jang H., Yang S., Baek J., Kim G., Park T. Optimizing design of catalyst layer structure with carbon-supported platinum weight ratio mixing method for pro-ton exchange membrane fuel cells. Energy. 2024. Vol. 291. P. 130363.
7. Lebedeva M.V., Krapivko A.L., Dulina O.A., Lensky M.S., Yashtulov N.A. Energy-efficient nanocomposite membrane-electrode units for chemical power sources. Chemical Bulletin. 2023. Vol. 6. No. 2. P. 19 – 28.
8. Yashtulov N.A., Zaitcev N.K., Lebedeva M.V., Patrikeev L.N. New polymer-graphene nanocomposite elec-trodes with platinum-palladium nanoparticles for chemical power sources. Express Polymer Letters. 2019. Vol. 13. No. 8. P. 739 – 748.
9. Lebedeva M.V., Ragutkin A.V., Sidorov I.M., Yashtulov N.A. Reducing hydrogen absorption of membrane-electrode unit materials for hydrogen generators. Fine chemical technologies. 2023. Vol. 18. No. 5. P. 461 – 470.
10. Lebedeva M.V., Antropov A.P., Ragutkin A.V., Yashtulov N.A. Development of prototypes of membrane-electrode units based on platinum nanocomposites for energy sources. Computational Nanotechnology. 2019. Vol. 6. No. 4. P. 56 – 59.
11. Antropov A.P., Lebedeva M.V., Ragutkin A.V., Zaitsev N.K., Yashtulov N.A. Energy efficiency of nano-composite membrane-electrode units for hydrogen generation. Bulletin of the Technological University. 2021. T. 24. No. 12. P. 73 – 78.
12. Krasnova A.O., Glebova N.V., Kastsova A.G., Pelageikina A.O., Redkov A.V., Tomkovich M.V., Nechi-tailov A.A. Stability of graphene/nafion composite in pem fc electrodes. Nanomaterials. 2024. Vol. 14. No. 11. P. 922.
13. Rey-Raap N., dos Santos-Gómez L., Arenillas A. Carbons for fuel cell energy generation. Carbon. 2024. V. 228. P. 11929. 14. Guterman V.E., Pustovaya L.E., Guterman A.V., Vysochina L.L. Borohydride synthesis of the Pt x -Ni/C electrocatalysts and investigation of their activity in the oxygen electroreduction reaction. Russian Journal of Electrochemistry. 2007. Vol. 43. No. 9. P. 1091 – 1096.
15. Antropov A.P., Ragutkin A.V., Lebedeva M.V., Yashtulov N.A. Nanocomposite micropower alternative en-ergy sources for electronic equipment. Thermal Power Engineering. 2021. No. 1. P. 21 – 29.
16. Lebedeva M.V., Antropov A.P., Golovacheva V.A., Erasov V.S., Yashtulov N.A. Metal-Polymer Functional Materials for Hydrogen-Oxygen Fuel Cells with Enhanced Performance. Applied Mechanics and Materials. 2023. Vol. 912. P. 101 – 106.
Lebedeva M.V., Golovacheva V.A., Kopylova N.A., Dulina O.A., Bakeeva I.V., Yashtulov N.A. Investigation of chemical power sources on an automated electronic load with controlled parameters. Chemical Bulletin. 2024. 7 (4). P. 25 – 36. https://doi.org/10.58224/2619-0575-2024-7-4-25-36