Golovacheva V.A.

Senior Lecturer, MIREA – Russian Technological University

Investigation of chemical power sources on an automated electronic load with controlled parameters

https://doi.org/10.58224/2619-0575-2024-7-4-25-36
Abstract
Hybrid installations for converting fuel energy into electricity are a promising way to provide humanity with affordable energy resources. However, the issue of obtaining reagents (hydrogen and oxygen) with high purity remains one of the most urgent. In this work, the energy characteristics of a hydrogen-oxygen fuel cell in combination with a water electrolyzer were investigated. Membrane-electrode assemblies were formed consisting of a modified membrane based on polytetrafluoroethylene with a platinum-containing component (Pt(30%)/C), as well as an anode and cathode made of carbon fabric and porous nickel doped with technical carbon and graphene. The structural characteristics of the material were studied using the scanning electron microscopy method. For the first time the investigation of hydrogen-oxygen membrane-electrode assemblies energy characteristics was carried out on an automated electronic load AKIP-1375/1E with embedded software. In the developed hydrogen-oxygen fuel cell, a more affordable commercial polytetrafluoroethylene-based membrane was used as a solid polymer elec-trolyte instead of the Nafion membrane, which significantly reduced the cost of developed MEA. As a result of the tests carried out, it was found that the maximum specific power is demonstrated by elements constructed on the basis of an anode and a cathode made of porous nickel modified with graphene.
PDF

DEVELOPMENT OF ELECTRODE MATERIALS BASED ON PLATINUM- RUTHENIUM NANOPARTICLES FOR METHANOL FUEL CELLS

Abstract
The creation of effective materials for the functioning of new chemical power sources is currently an urgent task. Fuel cells can use environmentally friendly and energy resources, such as hydrogen and carbon biofuels (methanol and ethanol), which have a wide range of potential applications from portable devices to power plants. The researcher’s attention is attracted by the development of methanol fuel cells, due to their compact design, liquid fuel, low operating temperature and high specific power. However, commercialization of such energy sources is still a difficult task due to the high platinum content on the electrodes, the high cost of precious metals, low durability and delayed kinetics of both anode and cathode reactions. Increasing the activity and reducing the Pt load are two main tasks in the development of methanol fuel cell technology. In the work, bimetallic Pt-Ru nanoparticles were synthesized by chemical reduction in reversed microemulsions to evaluate the parameters of methanol fuel cells. A porous nickel was used as a carrier matrix, which was formed by template synthesis in a dimensional mask of metallic aluminum. As a result of experimental studies of methanol membrane-electrode assemblies of fuel cells based on porous nickel with Pt and Pt-Ru nanoparticles, it was concluded that the maximum voltage and current density are achieved when using electrodes based on platinum-ruthenium nanoparticles with a particle size of no more than 3 nm, a catalyst content of 0.2 mg/cm2 and a process temperature of 60oC.
PDF

FORMATION OF NANOCOMPOSITE CARBON MATERIALS WITH BIMETALLIC NANOPARTICLES FOR AUTONOMOUS ENERGY SOURCES

Abstract
The development of highly efficient autonomous energy sources allows for stable and uninterrupted power supply of physical and chemical processes and industries under various operating modes. Modern technological methods and approaches to the production of nanostructured electrode materials, as well as the elucidation of the features of the mechanisms of electrochemical reactions based on platinum metal nanoparticles make it possible to design control sensors, fuel cells and electrolyzers with increased energy characteristics. Carbon nanotubes used to create nanostructured electrodes in chemical energy converters have high functional properties compared to other matrices and, modified with nanoparticles with a reduced metal content, can increase the electrocatalytically active electrode surface area and achieve maximum fuel cell power parameters. In this work, the formation of bimetallic nanostructured composites with a variable composition on carbon carrier matrices for the construction of electrodes of autonomous current sources was carried out. Single- and multi-wall carbon nanotubes were chosen as substrates. To obtain composites, bimetallic platinum-palladium nanoparticles with different metal ratios were synthesized. The materials were studied by electron microscopy and X-ray phase analysis. As a result, an optimal algorithm, a synthesis method and conditions for creating nanocomposites with minimal particle sizes are established. The molar ratio water:surfactant changing, as well as the ratio of precursor metals, it is possible to obtain bimetallic platinum-palladium nanoparticles up to 12 nm. The data on the influence of the formation metal nanoparticles conditions on their size, shape and distribution over the matrix surface had been obtained. A series of prototypes has been formed for practical use in the design of current sources.
PDF