The Review of corrosion protection by nanotubes TiO2 and BTA/TiO2 nanotubes dispersed in Epoxy and proposed method for preparation of anti-corrosion coating from this material assisted by ultrasound

https://doi.org/10.58224/2619-0575-2025-8-1-2
This review presents the corrosion resistance of epoxy coatings containing TiO2 nanotubes and BTA (benzotriazole)-modified TiO2 nanotubes. The purpose of the study is to examine how effectively these materials protect against corrosion on metal surfaces in various environments. The synthesis of TiO2 nanotubes and BTA/TiO2 nanotubes in epoxy coatings offers a promising approach to significantly enhance corrosion resistance while also opening considerable potential for applications in industries requiring high durability and material protection.
1. Lin J., Ottenbrite R.M. Surface modification of inorganic oxide particles with silane coupling agent and or-ganic dyes. Polym Adv Technol. 2001. Vol. 12. No. 5. P. 285 – 292. https://doi.org/10.1002/pat.64
2. Tsai C.C., Teng H. Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chemistry of Materials. 2004. Vol. 16. No. 22. P. 4352 – 4358. https://doi.org/10.1021/cm049643u
3. Kim J.Y., Sekino T., Park D.J., Tanaka S.I. Morphology modification of TiO2 nanotubes by controlling the starting material crystallite size for chemical synthesis. Journal of Nanoparticle Research. 2011. Vol. 13. P. 2319 – 2327. https://doi.org/10.1007/s11051-010-9990-6
4. Chen Quan, Yakovlev N.L. Adsorption and interaction of organosilanes on TiO2 nanoparticles. Applied Sur-face Science. 2010. Vol. 257. No. 5. P. 1395 – 1400. https://doi.org/10.1016/j.apsusc.2010.08.036
5 Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K. Titania nanotubes prepared by chemical pro-cessing. Advanced materials. 1999. Vol. 11. No. 15. P. 1307 – 1311. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
6. Shen M., Almallahi R., Rizvi Z., Gonzalez-Martinez E., Yang G., Robertson M.L. Accelerated hydrolytic degradation of ester-containing biobased epoxy resins. Polymer Chemistry. 2019. Vol. 10. No. 23. P. 3217 – 3229. https://doi.org/10.1039/C9PY00240E
7. Njoku D.I., Cui M., Xiao H., Shang B., Li Y. Understanding the anticorrosive protective mechanisms of mod-ified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic tech-niques // Scientific reports. 2017. Vol. 7. No. 1. P. 15597. https://doi.org/10.1038/s41598-017-15845-0
8. Atta A.M., El-Saeed A.M., El-Mahdy G.M., Al-Lohedan H.A. Atta. Application of magnetite nano-hybrid epoxy as protective marine coatings for steel. RSC advances. 2015. Vol. 5. No. 123. P. 101923 – 101931. [https://doi.org/10.1039/C5RA20730D
9. Wang C., Mao H., Wang C., Fu S. Dispersibility and hydrophobicity analysis of titanium dioxide nanoparti-cles grafted with silane coupling agent // Industrial & engineering chemistry research. 2011. Vol. 50. No. 21. P. 11930 – 11934. https://doi.org/10.1021/ie200887x
10. Lenz D.M., Delamar M., Ferreira C.A. Application of polypyrrole/TiO2 composite films as corrosion pro-tection of mild steel. Journal of Electroanalytical Chemistry. 2003. Vol. 540. P. 35 – 44. https://doi.org/10.1016/S0022-0728(02)01272-X
11. Kobayashi K., Takewaka K. Experimental studies on epoxy coated reinforcing steel for corrosion protection. International Journal of Cement Composites and Lightweight Concrete. 1984. Vol. 6. No. 2. P. 99 – 116. https://doi.org/10.1016/0262-5075(84)90039-3
12. Reeta Gupta, Subhash Chandra Evaluation of acoustical characteristics of ultrasonic transducer backing ma-terials at high hydrostatic pressures. Ultrasonics. 1998. Vol. 36. No. 1-5. P. 37 – 40. https://doi.org/10.1016/S0041-624X(97)00153-4
13. Palanivelu, Saravanan, Duraibabu Dhanapal, Ananda Kumar Srinivasan Palanivelu. Studies on silicon con-taining nanohybrid epoxy coatings for the protection of corrosion and bio-fouling on mild steel. Silicon. 2017. Vol. 9. No. 3. P. 447 – 458. https://doi.org/10.1007/s12633-014-9202-6
14. Pour Z.S., Ghaemy M., Bordbar S., Karimi-Maleh H. Effects of surface treatment of TiO2 nanoparticles on the adhesion and anticorrosion properties of the epoxy coating on mild steel using electrochemical technique. Pro-gress in Organic Coatings. – 2018. –Vol.119. P. 99 – 108. https://doi.org/10.1016/j.porgcoat.2018.02.01]
15. Rahmani Pooria, Akbar Shojaei, Nahid Pirhady Tavandashti Nanodiamond loaded with corrosion inhibitor as efficient nanocarrier to improve anticorrosion behavior of epoxy coating. Journal of Industrial and Engineering Chemistry. 2020. Vol.83. P. 153 – 163. https://doi.org/10.1016/j.jiec.2019.11.023
16. Aboorvakani R., John S. Kennady Vethanathan, Madhu K.U. Aboorvakani. Influence of Zn concentration on zinc oxide nanoparticles and their anti-corrosion property. Journal of Alloys and Compounds. 2020. Vol. 834. P. 155078. https://doi.org/10.1016/j.jallcom.2020.155078
17. Fadl A.M., Abdou M.I., Al-Elaa S.A., Hamza M.A., Sadeek S.A. Fadl. Evaluation of the anti-corrosion be-havior, impact resistance, acids and alkali immovability of nonylphenol ethoxylate/TiO2 hybrid epoxy nanocompo-site coating applied on the carbon steel surface. Progress in Organic Coatings. 2019. Vol. 136. P. 105263. https://doi.org/10.1016/j.porgcoat.2019.105263
18. Lenz Denise M., Michel Delamar, Carlos A. Ferreira Lenz. Application of polypyrrole/TiO2 composite films as corrosion protection of mild steel. Journal of Electroanalytical Chemistry. 2003. Vol. 540. P. 35 – 44. https://doi.org/10.1016/S0022-0728(02)01272-X
19. Shen G.X., Chen Y.C., Lin C.J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method. Thin Solid Films. 2005. Vol. 489. No. 1-2. P. 130 – 136. https://doi.org/10.1016/j.tsf.2005.05.016
20. Mahulikar Pramod P., Rajendra S. Jadhav, Dilip G. Hundiwale. Performance of polyaniline/TiO2 nanocom-posites in epoxy for corrosion resistant coatings. 2011.
21. Neville E.M., MacElroy J.D., Thampi K.R., Sullivan J.A. Neville. Visible light active C-doped titanate nanotubes prepared via alkaline hydrothermal treatment of C-doped nanoparticulate TiO2: photoelectrochemical and photocatalytic properties. Journal of Photochemistry and Photobiology A: Chemistry. 2013. Vol. 267. P. 17 – 24 [https://doi.org/10.1016/j.jphotochem.2013.06.008]
22. Ranjitha A., Muthukumarasamy N., Thambidurai M., Velauthapillai D., Agilan S., Balasundaraprabhu R.A. Ranjitha. Effect of reaction time on the formation of TiO2 nanotubes prepared by hydrothermal method. Optik. 2015. Vol. 126. No. 20. P. 2491 – 2494. https://doi.org/10.1016/j.ijleo.2015.06.022
23. Arunchandran C., Ramya S., George R.P., Mudali U.K. Arunchandran. Self-healing corrosion resistive coat-ings based on inhibitor loaded TiO2 nanocontainers. Journal of the electrochemical Society. 2012. Vol. 159. No. 11. P. 552 – 559. https://10.1149/2.020212jes
24. Kumar K., Ghosh P.K., Kumar A. Improving mechanical and thermal properties of TiO2-epoxy nanocom-posite. Composites Part B: Engineering. 2016. Vol. 97. P. 353 – 360. https://doi.org/10.1016/j.compositesb.2016.04.080
25. Sakthipandi K., Sethuraman B., Venkatesan K., Alhashmi B., Purushothaman G., Ansari I.A. Ultrasound-Based Sonochemical Synthesis of Nanomaterials. Handbook of Vibroacoustics, Noise and Harshness. Springer, Singapore. 2024. https://doi.org/10.1007/978-981-99-4638-9_58-1
26. Brooman E.W. Modifying organic coatings to provide corrosion resistance: Part II – Inorganic additives and inhibitors. Metal Finishing. 2002. Vol. 100. No. 5. P. 42 – 53. https://doi.org/10.1016/S0026-0576(02)80382-8
27. Zheludkevich M.L., Shchukin, D.G., Yasakau, K.A., Möhwald H., Ferreira M.G. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chemistry of Materials. 2007. Vol. 19. No. 5. P. 402 – 411. https://doi.org/10.1021/cm062066k
28. Chen X., Mao S.S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications // Chemical reviews. 2007. Vol. 107. No. 7. P. 2891 – 2959. https://doi.org/10.1021/cr0500535
29. White S.R., Sottos N.R., Geubelle P.H., Moore J.S., Kessler M.R., Sriram S.R., Viswanathan S. Autonomic healing of polymer composites. Nature. 2001. Vol. 409. No. 6822. P. 794 – 797. https://doi.org/10.1038/35057232
30. Dung Vu.V., Nigmetzyanov R.I. Increasing the anti-corrosion protection of metal surfaces using a composite epoxy coating with BTA-TiO2 nanotubes treated with ultrasound: a review. International Journal of Humanities and Natural Sciences. 2024. No. 9-1 (96). P. 131 – 135. https://doi:10.24412/2500-1000-2024-9-1-131-135
31. Wang Z., Koldyushov V.K., Nigmetzyanov R.I. Prospects for the use of ultrasound in the application of pro-tective compositions with BTA-TiO2 nanowires. Scientific aspect. 2024. Vol. 7. No. 5. P. 859 – 867.
Vu Van Zung, Nigmetzyanov R.I. The Review of corrosion protection by nanotubes TiO2 and BTA/TiO2 nanotubes dispersed in Epoxy and proposed method for preparation of anti-corrosion coating from this material assisted by ultrasound. Chemical Bulletin. 2025. 8 (1). 2. https://doi.org/10.58224/2619-0575-2025-8-1-2