В данном обзоре рассматривается коррозионная стойкость эпоксидных покрытий, содержащих нанонити TiO2 и модифицированные нанонити TiO2, обработанные БТА (бензотриазолом). Целью исследования является изучение того, насколько эффективно эти материалы защищают от коррозии металлические поверхности в различных средах. Синтез нанонитей TiO2 и нанотрубок БТА/TiO2 в эпоксидных покрытиях предлагает многообещающий подход к значительному повышению коррозионной стойкости, а также открывает значительный потенциал для применения в отраслях, требующих высокой прочности и защиты материалов.
1. Lin J., Ottenbrite R.M. Surface modification of inorganic oxide particles with silane coupling agent and organic dyes // Polym Adv Technol. 2001. Vol. 12. № 5. P. 285 – 292. https://doi.org/10.1002/pat.64
2. Tsai C.C., Teng H. Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment // Chemistry of Materials. 2004. Vol. 16. № 22. P. 4352 – 4358. https://doi.org/10.1021/cm049643u
3. Kim J.Y., Sekino T., Park D.J., Tanaka S.I. Morphology modification of TiO2 nanotubes by controlling the starting material crystallite size for chemical synthesis // Journal of Nanoparticle Research. 2011. Vol. 13. P. 2319 – 2327. https://doi.org/10.1007/s11051-010-9990-6
4. Chen Quan, Yakovlev N.L. Adsorption and interaction of organosilanes on TiO2 nanoparticles // Applied Surface Science. 2010. Vol. 257. № 5. P. 1395 – 1400. https://doi.org/10.1016/j.apsusc.2010.08.036
5 Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K. Titania nanotubes prepared by chemical processing // Advanced materials. 1999. Vol. 11. № 15. P. 1307 – 1311. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
6. Shen M., Almallahi R., Rizvi Z., Gonzalez-Martinez E., Yang G., Robertson M.L. Accelerated hydrolytic degradation of ester-containing biobased epoxy resins // Polymer Chemistry. 2019. Vol. 10. № 23. P. 3217 – 3229. https://doi.org/10.1039/C9PY00240E
7. Njoku D.I., Cui M., Xiao H., Shang B., Li Y. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques // Scientific reports. 2017. Vol. 7. № 1. P. 15597. https://doi.org/10.1038/s41598-017-15845-0
8. Atta A.M., El-Saeed A.M., El-Mahdy G.M., Al-Lohedan H.A. Atta. Application of magnetite nano-hybrid epoxy as protective marine coatings for steel // RSC advances. 2015. Vol. 5. № 123. P. 101923 – 101931. [https://doi.org/10.1039/C5RA20730D
9. Wang C., Mao H., Wang C., Fu S. Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent // Industrial & engineering chemistry research. 2011. Vol. 50. № 21. P. 11930 – 11934. https://doi.org/10.1021/ie200887x
10. Lenz D.M., Delamar M., Ferreira C.A. Application of polypyrrole/TiO2 composite films as corrosion protection of mild steel // Journal of Electroanalytical Chemistry. 2003. Vol. 540. P. 35 – 44. https://doi.org/10.1016/S0022-0728(02)01272-X
11. Kobayashi K., Takewaka K. Experimental studies on epoxy coated reinforcing steel for corrosion protection // International Journal of Cement Composites and Lightweight Concrete. 1984. Vol. 6. № 2. P. 99 – 116. https://doi.org/10.1016/0262-5075(84)90039-3
12. Reeta Gupta, Subhash Chandra Evaluation of acoustical characteristics of ultrasonic transducer backing materials at high hydrostatic pressures // Ultrasonics. 1998. Vol. 36. № 1-5. P. 37 – 40. https://doi.org/10.1016/S0041-624X(97)00153-4
13. Palanivelu, Saravanan, Duraibabu Dhanapal, Ananda Kumar Srinivasan Palanivelu. Studies on silicon containing nanohybrid epoxy coatings for the protection of corrosion and bio-fouling on mild steel // Silicon. 2017. Vol. 9. № 3. P. 447 – 458. https://doi.org/10.1007/s12633-014-9202-6
14. Pour Z.S., Ghaemy M., Bordbar S., Karimi-Maleh H. Effects of surface treatment of TiO2 nanoparticles on the adhesion and anticorrosion properties of the epoxy coating on mild steel using electrochemical technique // Progress in Organic Coatings. – 2018. –Vol.119. P. 99 – 108. https://doi.org/10.1016/j.porgcoat.2018.02.01]
15. Rahmani Pooria, Akbar Shojaei, Nahid Pirhady Tavandashti Nanodiamond loaded with corrosion inhibitor as efficient nanocarrier to improve anticorrosion behavior of epoxy coating // Journal of Industrial and Engineering Chemistry. 2020. Vol .83. P. 153 – 163. https://doi.org/10.1016/j.jiec.2019.11.023
16. Aboorvakani R., John S. Kennady Vethanathan, Madhu K.U. Aboorvakani. Influence of Zn concentration on zinc oxide nanoparticles and their anti-corrosion property // Journal of Alloys and Compounds. 2020. Vol. 834. P. 155078. https://doi.org/10.1016/j.jallcom.2020.155078
17. Fadl A.M., Abdou M.I., Al-Elaa S.A., Hamza M.A., Sadeek S.A. Fadl. Evaluation the anti-corrosion behavior, impact resistance, acids and alkali immovability of nonylphenol ethoxylate/TiO2 hybrid epoxy nanocomposite coating applied on the carbon steel surface // Progress in Organic Coatings. 2019. Vol. 136. P. 105263. https://doi.org/10.1016/j.porgcoat.2019.105263
18. Lenz Denise M., Michel Delamar, Carlos A. Ferreira Lenz. Application of polypyrrole/TiO2 composite films as corrosion protection of mild steel // Journal of Electroanalytical Chemistry. 2003. Vol. 540. P. 35 – 44. https://doi.org/10.1016/S0022-0728(02)01272-X
19. Shen G.X., Chen Y.C., Lin C.J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method // Thin Solid Films. 2005. Vol. 489. № 1-2. P. 130 – 136. https://doi.org/10.1016/j.tsf.2005.05.016
20. Mahulikar Pramod P., Rajendra S. Jadhav, Dilip G. Hundiwale. Performance of polyaniline/TiO2 nanocomposites in epoxy for corrosion resistant coatings. 2011.
21. Neville E.M., MacElroy J.D., Thampi K.R., Sullivan J.A. Neville. Visible light active C-doped titanate nanotubes prepared via alkaline hydrothermal treatment of C-doped nanoparticulate TiO2: photoelectrochemical and photocatalytic properties // Journal of Photochemistry and Photobiology A: Chemistry. 2013. Vol. 267. P. 17 – 24 [https://doi.org/10.1016/j.jphotochem.2013.06.008]
22. Ranjitha A., Muthukumarasamy N., Thambidurai M., Velauthapillai D., Agilan S., Balasundaraprabhu R.A. Ranjitha. Effect of reaction time on the formation of TiO2 nanotubes prepared by hydrothermal method // Optik. 2015. Vol. 126. № 20. P. 2491 – 2494. https://doi.org/10.1016/j.ijleo.2015.06.022
23. Arunchandran C., Ramya S., George R.P., Mudali U.K. Arunchandran. Self-healing corrosion resistive coatings based on inhibitor loaded TiO2 nanocontainers // Journal of the electrochemical Society. 2012. Vol. 159. № 11. P. 552 – 559. https://10.1149/2.020212jes
24. Kumar K., Ghosh P.K., Kumar A. Improving mechanical and thermal properties of TiO2-epoxy nanocomposite // Composites Part B: Engineering. 2016. Vol. 97. P. 353 – 360. https://doi.org/10.1016/j.compositesb.2016.04.080
25. Sakthipandi K., Sethuraman B., Venkatesan K., Alhashmi B., Purushothaman G., Ansari I.A. Ultrasound-Based Sonochemical Synthesis of Nanomaterials / Handbook of Vibroacoustics, Noise and Harshness. Springer, Singapore. 2024. https://doi.org/10.1007/978-981-99-4638-9_58-1
26. Brooman E.W. Modifying organic coatings to provide corrosion resistance: Part II – Inorganic additives and inhibitors // Metal Finishing. 2002. Vol. 100. № 5. P. 42 – 53. https://doi.org/10.1016/S0026-0576(02)80382-8
27. Zheludkevich M.L., Shchukin, D.G., Yasakau, K.A., Möhwald H., Ferreira M.G. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor // Chemistry of Materials. 2007. Vol. 19. № 5. P. 402 – 411. https://doi.org/10.1021/cm062066k
28. Chen X., Mao S.S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications // Chemical reviews. 2007. Vol. 107. № 7. P. 2891 – 2959. https://doi.org/10.1021/cr0500535
29. White S.R., Sottos N.R., Geubelle P.H., Moore J.S., Kessler M.R., Sriram S.R., Viswanathan S. Autonomic healing of polymer composites // Nature. 2001. Vol. 409. № 6822. P. 794 – 797. https://doi.org/10.1038/35057232
30. Dung Vu.V., Nigmetzyanov R.I. Increasing the anti-corrosion protection of metal surfaces using a composite epoxy coating with BTA-TiO2 nanotubes treated with ultrasound: a review // International Journal of Humanities and Natural Sciences. 2024. No. 9-1 (96). P. 131 – 135. https://doi:10.24412/2500-1000-2024-9-1-131-135
31. Ван З., Кольдюшов В.К., Нигметзянов Р.И. Перспективы использования ультразвука при нанесении защитных композиций с нанонитями БТА-TiO2 // Научный аспект. 2024. Т. 7. № 5. С. 859 – 867.
2. Tsai C.C., Teng H. Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment // Chemistry of Materials. 2004. Vol. 16. № 22. P. 4352 – 4358. https://doi.org/10.1021/cm049643u
3. Kim J.Y., Sekino T., Park D.J., Tanaka S.I. Morphology modification of TiO2 nanotubes by controlling the starting material crystallite size for chemical synthesis // Journal of Nanoparticle Research. 2011. Vol. 13. P. 2319 – 2327. https://doi.org/10.1007/s11051-010-9990-6
4. Chen Quan, Yakovlev N.L. Adsorption and interaction of organosilanes on TiO2 nanoparticles // Applied Surface Science. 2010. Vol. 257. № 5. P. 1395 – 1400. https://doi.org/10.1016/j.apsusc.2010.08.036
5 Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K. Titania nanotubes prepared by chemical processing // Advanced materials. 1999. Vol. 11. № 15. P. 1307 – 1311. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
6. Shen M., Almallahi R., Rizvi Z., Gonzalez-Martinez E., Yang G., Robertson M.L. Accelerated hydrolytic degradation of ester-containing biobased epoxy resins // Polymer Chemistry. 2019. Vol. 10. № 23. P. 3217 – 3229. https://doi.org/10.1039/C9PY00240E
7. Njoku D.I., Cui M., Xiao H., Shang B., Li Y. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques // Scientific reports. 2017. Vol. 7. № 1. P. 15597. https://doi.org/10.1038/s41598-017-15845-0
8. Atta A.M., El-Saeed A.M., El-Mahdy G.M., Al-Lohedan H.A. Atta. Application of magnetite nano-hybrid epoxy as protective marine coatings for steel // RSC advances. 2015. Vol. 5. № 123. P. 101923 – 101931. [https://doi.org/10.1039/C5RA20730D
9. Wang C., Mao H., Wang C., Fu S. Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent // Industrial & engineering chemistry research. 2011. Vol. 50. № 21. P. 11930 – 11934. https://doi.org/10.1021/ie200887x
10. Lenz D.M., Delamar M., Ferreira C.A. Application of polypyrrole/TiO2 composite films as corrosion protection of mild steel // Journal of Electroanalytical Chemistry. 2003. Vol. 540. P. 35 – 44. https://doi.org/10.1016/S0022-0728(02)01272-X
11. Kobayashi K., Takewaka K. Experimental studies on epoxy coated reinforcing steel for corrosion protection // International Journal of Cement Composites and Lightweight Concrete. 1984. Vol. 6. № 2. P. 99 – 116. https://doi.org/10.1016/0262-5075(84)90039-3
12. Reeta Gupta, Subhash Chandra Evaluation of acoustical characteristics of ultrasonic transducer backing materials at high hydrostatic pressures // Ultrasonics. 1998. Vol. 36. № 1-5. P. 37 – 40. https://doi.org/10.1016/S0041-624X(97)00153-4
13. Palanivelu, Saravanan, Duraibabu Dhanapal, Ananda Kumar Srinivasan Palanivelu. Studies on silicon containing nanohybrid epoxy coatings for the protection of corrosion and bio-fouling on mild steel // Silicon. 2017. Vol. 9. № 3. P. 447 – 458. https://doi.org/10.1007/s12633-014-9202-6
14. Pour Z.S., Ghaemy M., Bordbar S., Karimi-Maleh H. Effects of surface treatment of TiO2 nanoparticles on the adhesion and anticorrosion properties of the epoxy coating on mild steel using electrochemical technique // Progress in Organic Coatings. – 2018. –Vol.119. P. 99 – 108. https://doi.org/10.1016/j.porgcoat.2018.02.01]
15. Rahmani Pooria, Akbar Shojaei, Nahid Pirhady Tavandashti Nanodiamond loaded with corrosion inhibitor as efficient nanocarrier to improve anticorrosion behavior of epoxy coating // Journal of Industrial and Engineering Chemistry. 2020. Vol .83. P. 153 – 163. https://doi.org/10.1016/j.jiec.2019.11.023
16. Aboorvakani R., John S. Kennady Vethanathan, Madhu K.U. Aboorvakani. Influence of Zn concentration on zinc oxide nanoparticles and their anti-corrosion property // Journal of Alloys and Compounds. 2020. Vol. 834. P. 155078. https://doi.org/10.1016/j.jallcom.2020.155078
17. Fadl A.M., Abdou M.I., Al-Elaa S.A., Hamza M.A., Sadeek S.A. Fadl. Evaluation the anti-corrosion behavior, impact resistance, acids and alkali immovability of nonylphenol ethoxylate/TiO2 hybrid epoxy nanocomposite coating applied on the carbon steel surface // Progress in Organic Coatings. 2019. Vol. 136. P. 105263. https://doi.org/10.1016/j.porgcoat.2019.105263
18. Lenz Denise M., Michel Delamar, Carlos A. Ferreira Lenz. Application of polypyrrole/TiO2 composite films as corrosion protection of mild steel // Journal of Electroanalytical Chemistry. 2003. Vol. 540. P. 35 – 44. https://doi.org/10.1016/S0022-0728(02)01272-X
19. Shen G.X., Chen Y.C., Lin C.J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method // Thin Solid Films. 2005. Vol. 489. № 1-2. P. 130 – 136. https://doi.org/10.1016/j.tsf.2005.05.016
20. Mahulikar Pramod P., Rajendra S. Jadhav, Dilip G. Hundiwale. Performance of polyaniline/TiO2 nanocomposites in epoxy for corrosion resistant coatings. 2011.
21. Neville E.M., MacElroy J.D., Thampi K.R., Sullivan J.A. Neville. Visible light active C-doped titanate nanotubes prepared via alkaline hydrothermal treatment of C-doped nanoparticulate TiO2: photoelectrochemical and photocatalytic properties // Journal of Photochemistry and Photobiology A: Chemistry. 2013. Vol. 267. P. 17 – 24 [https://doi.org/10.1016/j.jphotochem.2013.06.008]
22. Ranjitha A., Muthukumarasamy N., Thambidurai M., Velauthapillai D., Agilan S., Balasundaraprabhu R.A. Ranjitha. Effect of reaction time on the formation of TiO2 nanotubes prepared by hydrothermal method // Optik. 2015. Vol. 126. № 20. P. 2491 – 2494. https://doi.org/10.1016/j.ijleo.2015.06.022
23. Arunchandran C., Ramya S., George R.P., Mudali U.K. Arunchandran. Self-healing corrosion resistive coatings based on inhibitor loaded TiO2 nanocontainers // Journal of the electrochemical Society. 2012. Vol. 159. № 11. P. 552 – 559. https://10.1149/2.020212jes
24. Kumar K., Ghosh P.K., Kumar A. Improving mechanical and thermal properties of TiO2-epoxy nanocomposite // Composites Part B: Engineering. 2016. Vol. 97. P. 353 – 360. https://doi.org/10.1016/j.compositesb.2016.04.080
25. Sakthipandi K., Sethuraman B., Venkatesan K., Alhashmi B., Purushothaman G., Ansari I.A. Ultrasound-Based Sonochemical Synthesis of Nanomaterials / Handbook of Vibroacoustics, Noise and Harshness. Springer, Singapore. 2024. https://doi.org/10.1007/978-981-99-4638-9_58-1
26. Brooman E.W. Modifying organic coatings to provide corrosion resistance: Part II – Inorganic additives and inhibitors // Metal Finishing. 2002. Vol. 100. № 5. P. 42 – 53. https://doi.org/10.1016/S0026-0576(02)80382-8
27. Zheludkevich M.L., Shchukin, D.G., Yasakau, K.A., Möhwald H., Ferreira M.G. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor // Chemistry of Materials. 2007. Vol. 19. № 5. P. 402 – 411. https://doi.org/10.1021/cm062066k
28. Chen X., Mao S.S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications // Chemical reviews. 2007. Vol. 107. № 7. P. 2891 – 2959. https://doi.org/10.1021/cr0500535
29. White S.R., Sottos N.R., Geubelle P.H., Moore J.S., Kessler M.R., Sriram S.R., Viswanathan S. Autonomic healing of polymer composites // Nature. 2001. Vol. 409. № 6822. P. 794 – 797. https://doi.org/10.1038/35057232
30. Dung Vu.V., Nigmetzyanov R.I. Increasing the anti-corrosion protection of metal surfaces using a composite epoxy coating with BTA-TiO2 nanotubes treated with ultrasound: a review // International Journal of Humanities and Natural Sciences. 2024. No. 9-1 (96). P. 131 – 135. https://doi:10.24412/2500-1000-2024-9-1-131-135
31. Ван З., Кольдюшов В.К., Нигметзянов Р.И. Перспективы использования ультразвука при нанесении защитных композиций с нанонитями БТА-TiO2 // Научный аспект. 2024. Т. 7. № 5. С. 859 – 867.
Ву Ван Зунг, Нигметзянов Р.И. Обзор защиты от коррозии с помощью нанонитей TiO2 и нанотрубок БТА/TiO2, диспергированных в эпоксидной смоле, и предлагаемый метод получения антикоррозионного покрытия из этого материала с помощью ультразвука // Chemical Bulletin. 2025. Том 8. № 1. 2. https://doi.org/10.58224/2619-0575-2025-8-1-2