пиролиз отходов полиэтилена низкой плотности (LDPE) считается высокоэффективным и перспективным методом переработки. Целью данной работы является исследование кинетики пиролиза с применением трех безмодельных методов (Фридмана, Флинна-Уолла-Озавы (FWO) и Киссинджера-Акахиры-Сунозе (KAS)) и двух методов подгонки моделей (Аррениуса и Коутса-Редферна). Термогравиметрические (TGA) и дифференциальные термогравиметрические (DTG) термограммы при 5, 10, 20 и 40 К мин−1 показали линейную кривую, что подразумевает протекающие реакции первого порядка. Значения кинетических параметров (E_A и A) LDPE были рассчитаны при различных конверсиях тремя безмодельными методами, и средние значения полученных энергий активации хорошо согласуются и находятся в диапазоне от 190,23 до 191,89 кДж/моль. Данные кинетические параметры были рассчитаны дополнительно при различных скоростях нагрева с применением методов Аррениуса и Коутса-Редферна.
1. Abdullahi Shagali A. and others. Fast co-pyrolysis of corncob with plastics: Evaluation of thermal behavior using deconvolution procedure, kinetic analysis and product characterization // Fuel. 2025. Vol. 381. P. 1333002.
2. Abedeen A., Hossain M.S., Rahman A.N.M.M. and others. Characterization and energy recovery of fuels from medical waste via thermal pyrolysis // Heliyon. 2025. Vol. 11. № 4. P. e425993.
3. Ai Z., Zhang W., Yang L. et al. Investigation and prediction of co-pyrolysis between oily sludge and high-density polyethylene via in-situ DRIFTS, TGA, and artificial neural network // Journal of Analytical and Applied Pyrolysis. 2022. Vol. 166. P. 1056104.
4. Altarawneh S., Al-Harahsheh M., Dodds C.et al. Thermodynamic, pyrolytic, and kinetic investigation on the thermal decomposition of polyvinyl chloride in the presence of franklinite // Process Safety and Environmental Protection. 2022. Vol. 168. P. 558 – 5695.
5. Aniśko-Michalak J., Kosmela P., Barczewski M. On the use of black tea waste as a functional filler for manufacturing self-stabilizing polyethylene composites: In-depth thermal analysis // Industrial Crops and Products. 2025. Vol. 223. P. 1201816.
6. Chen B., Xie D., Jiang Y. Co-pyrolysis of corn stalk and high-density polyethylene with emphasis on the fibrous tissue difference on thermal behavior and kinetics // Science of The Total Environment. 2024. Vol. 957. P. 1778477.
7. Enyoh C.E., Ovuoraye P.E., Rabin M.H. Thermal degradation evaluation of polyethylene terephthalate microplastics: Insights from kinetics and machine learning algorithms using non-isoconversional TGA data // Journal of Environmental Chemical Engineering. 2024. Vol. 12. № 2. P. 1119098.
8. Guo S., Wang Z., Chen G. Co-pyrolysis characteristics of forestry and agricultural residues and waste plastics: Thermal decomposition and products distribution // Process Safety and Environmental Protection. 2023. Vol. 177. P. 380 – 3909.
9. Mahapatra P.M., Pradhan D., Kumar S., Panda A.K. Influence of polypropylene and high-density polyethylene on isothermal pyrolytic degradation of discarded bakelite: Kinetic analysis and batch pyrolysis studies // Process Safety and Environmental Protection. 2024. Vol. 191. P. 769 – 77910.
10. Najafi H., Rezaei Z. Laye, Sobati M.A. Deep insights on the Co-pyrolysis of tea stem and polyethylene terephthalate (PET): Unveiling synergistic effects and detailed kinetic modeling // Journal of Environmental Chemical Engineering. 2024. Vol. 12. № 5. P. 11390611.
11. Natesakhawat S., Weidman J., Garcia S. et al. Pyrolysis of high-density polyethylene: Degradation behaviors, kinetics, and product characteristics // Journal of the Energy Institute. 2024. Vol. 116. P. 10173812.
12. Nazari M.A., Haydary J. Pyrolysis behavior of densified refuse-derived fuels (d-RDFs) via TGA: Investigating the impact of densification degree on thermal kinetics and thermodynamics // Journal of the Energy Institute. 2024. Vol. 115. P. 10170013.
13. Ong M.Y., Milano J., Nomanbhay S. et al. Insights into algae-plastic pyrolysis: Thermogravimetric and kinetic approaches for renewable energy // Energy. 2025. Vol. 314. P. 13432214.
14. Roy A., Panda S., Gupta J. Effects of interfacial interactions on structural, optical, thermal degradation properties and photocatalytic activity of low-density polyethylene/BaTiO3 nanocomposite // Polymer. 2023. Vol. 276. P. 12593215.
15. Shagali A.A., Hu S., Li H. Thermal behavior, synergistic effect and thermodynamic parameter evaluations of biomass/plastics co–pyrolysis in a concentrating photothermal TGA // Fuel. 2023. Vol. 331. P. 12572416.
16. Stanley J., Tarani E., Ainali N.M. Thermal decomposition kinetics and mechanism of poly(ethylene 2,5-furan dicarboxylate) Nanocomposites for food packaging applications // Thermochimica Acta. 2024. Vol. 733. P. 17970017.
17. Tee M.Y., Wang D., Wong K.-L. Investigating waste valorization potential through the co-pyrolysis of waste activated sludge and polyethylene terephthalate: Analysis on thermal degradation behavior, kinetic properties and by-products // Energy Conversion and Management. 2025. Vol. 325. P. 11941218.
18. Yousef S., Eimontas J., Meile K. Co-pyrolysis of Baltic wheat straw and low-density polyethylene bags and its kinetic and thermodynamic behaviour // Industrial Crops and Products. 2024. Vol. 218. P. 11897019.
19. Zhang S., Yao Q., He L. Correction and validation of the Master-plots method for the thermal cracking kinetic mechanism of solvent-swollen polypropylene // Chemical Engineering Science. 2025. Vol. 306. P. 12130420.
20. Żukowski W., Berkowicz-Płatek G., Wrona J. Thermal decomposition of polyolefins under different oxygen content. Kinetic parameters evaluation // Energy. 2024. Vol. 293. P. 130565
2. Abedeen A., Hossain M.S., Rahman A.N.M.M. and others. Characterization and energy recovery of fuels from medical waste via thermal pyrolysis // Heliyon. 2025. Vol. 11. № 4. P. e425993.
3. Ai Z., Zhang W., Yang L. et al. Investigation and prediction of co-pyrolysis between oily sludge and high-density polyethylene via in-situ DRIFTS, TGA, and artificial neural network // Journal of Analytical and Applied Pyrolysis. 2022. Vol. 166. P. 1056104.
4. Altarawneh S., Al-Harahsheh M., Dodds C.et al. Thermodynamic, pyrolytic, and kinetic investigation on the thermal decomposition of polyvinyl chloride in the presence of franklinite // Process Safety and Environmental Protection. 2022. Vol. 168. P. 558 – 5695.
5. Aniśko-Michalak J., Kosmela P., Barczewski M. On the use of black tea waste as a functional filler for manufacturing self-stabilizing polyethylene composites: In-depth thermal analysis // Industrial Crops and Products. 2025. Vol. 223. P. 1201816.
6. Chen B., Xie D., Jiang Y. Co-pyrolysis of corn stalk and high-density polyethylene with emphasis on the fibrous tissue difference on thermal behavior and kinetics // Science of The Total Environment. 2024. Vol. 957. P. 1778477.
7. Enyoh C.E., Ovuoraye P.E., Rabin M.H. Thermal degradation evaluation of polyethylene terephthalate microplastics: Insights from kinetics and machine learning algorithms using non-isoconversional TGA data // Journal of Environmental Chemical Engineering. 2024. Vol. 12. № 2. P. 1119098.
8. Guo S., Wang Z., Chen G. Co-pyrolysis characteristics of forestry and agricultural residues and waste plastics: Thermal decomposition and products distribution // Process Safety and Environmental Protection. 2023. Vol. 177. P. 380 – 3909.
9. Mahapatra P.M., Pradhan D., Kumar S., Panda A.K. Influence of polypropylene and high-density polyethylene on isothermal pyrolytic degradation of discarded bakelite: Kinetic analysis and batch pyrolysis studies // Process Safety and Environmental Protection. 2024. Vol. 191. P. 769 – 77910.
10. Najafi H., Rezaei Z. Laye, Sobati M.A. Deep insights on the Co-pyrolysis of tea stem and polyethylene terephthalate (PET): Unveiling synergistic effects and detailed kinetic modeling // Journal of Environmental Chemical Engineering. 2024. Vol. 12. № 5. P. 11390611.
11. Natesakhawat S., Weidman J., Garcia S. et al. Pyrolysis of high-density polyethylene: Degradation behaviors, kinetics, and product characteristics // Journal of the Energy Institute. 2024. Vol. 116. P. 10173812.
12. Nazari M.A., Haydary J. Pyrolysis behavior of densified refuse-derived fuels (d-RDFs) via TGA: Investigating the impact of densification degree on thermal kinetics and thermodynamics // Journal of the Energy Institute. 2024. Vol. 115. P. 10170013.
13. Ong M.Y., Milano J., Nomanbhay S. et al. Insights into algae-plastic pyrolysis: Thermogravimetric and kinetic approaches for renewable energy // Energy. 2025. Vol. 314. P. 13432214.
14. Roy A., Panda S., Gupta J. Effects of interfacial interactions on structural, optical, thermal degradation properties and photocatalytic activity of low-density polyethylene/BaTiO3 nanocomposite // Polymer. 2023. Vol. 276. P. 12593215.
15. Shagali A.A., Hu S., Li H. Thermal behavior, synergistic effect and thermodynamic parameter evaluations of biomass/plastics co–pyrolysis in a concentrating photothermal TGA // Fuel. 2023. Vol. 331. P. 12572416.
16. Stanley J., Tarani E., Ainali N.M. Thermal decomposition kinetics and mechanism of poly(ethylene 2,5-furan dicarboxylate) Nanocomposites for food packaging applications // Thermochimica Acta. 2024. Vol. 733. P. 17970017.
17. Tee M.Y., Wang D., Wong K.-L. Investigating waste valorization potential through the co-pyrolysis of waste activated sludge and polyethylene terephthalate: Analysis on thermal degradation behavior, kinetic properties and by-products // Energy Conversion and Management. 2025. Vol. 325. P. 11941218.
18. Yousef S., Eimontas J., Meile K. Co-pyrolysis of Baltic wheat straw and low-density polyethylene bags and its kinetic and thermodynamic behaviour // Industrial Crops and Products. 2024. Vol. 218. P. 11897019.
19. Zhang S., Yao Q., He L. Correction and validation of the Master-plots method for the thermal cracking kinetic mechanism of solvent-swollen polypropylene // Chemical Engineering Science. 2025. Vol. 306. P. 12130420.
20. Żukowski W., Berkowicz-Płatek G., Wrona J. Thermal decomposition of polyolefins under different oxygen content. Kinetic parameters evaluation // Energy. 2024. Vol. 293. P. 130565
Карасев Р.А. Термическое разложение полиэтилена низкой плотности: кинетическое исследование с применением данных TGA и DTG // Chemical Bulletin. 2025. Том 8. № 1. 1. https://doi.org/10.58224/2619-0575-2025-8-1-1