30-41 p.
This paper presents the magnetite study results of a Fe3O4/C nanocomposite obtained with air pyrolysis of a heterogeneous system which includes iron dichloride tetrahydrate – the source of magnetite nanoparticles (NPs) – and polyacrylonitrile (PAN) – the source of a carbon shell for nanoparticles protection from issues like aggregation. Methods such as Mössbauer spectroscopy and X-ray diffraction analysis are used for studying and determine the magnetite NP formation way. There are two types of NPs in the system studied: ferrimagnetic and superparamagnetic ones, the difference between which is clearly watched when taking Mössbauer spectra – sextets and doublets relatively. All magnetite NPs are established to be formed according to the reaction chain the inter-mediate elements of which is ferrous carbonate well-known for its decomposition into magnetite upon heating: FeCl2 → FeCO3 → Fe3O4. This transformation occurs in the temperature range from 200 oC to 400 oC above which an ability of the carbon shell to protect NPs is gradually reduced that leads to agglomeration and oxidation to hematite α-Fe2O3.
To study the magnetite obtained, size distribution of magnetite crystallites and the degree of nonstoichiometry are estimated. According to various calculations, the average crystallite size is 9-10 nm.
To preserve the NP properties, storage methods are important to be chosen properly, thence Mössbauer spec-troscopy of the Fe3O4/C nanocomposite is carried out after keeping it in air at room temperature for 1 year.
To study the magnetite obtained, size distribution of magnetite crystallites and the degree of nonstoichiometry are estimated. According to various calculations, the average crystallite size is 9-10 nm.
To preserve the NP properties, storage methods are important to be chosen properly, thence Mössbauer spec-troscopy of the Fe3O4/C nanocomposite is carried out after keeping it in air at room temperature for 1 year.
1. Grebennikov I.S. i t.d. Struktura i magnitnye svojstva nanoporoshkov oksidov zheleza i gibridnyh nanopo-roshkov tipa «jadro-obolochka» na ih osnove. Izvestija RAN. Serija Fizicheskaja. 2018. T. 82. № 9. S. 1343 – 1354.
2. Kozlov V.V. i t.d. O sinteze nanokompozita Fe3O4/C na osnove poliakrilonitrila i FeCl2·4H2O pri termoobrabotke na vozduhe. East European Scientific Journal. 2018. Vol. 7. P. 66 – 72.
3. Korovushkin V.V. JaGR-spektroskopija v praktike geologo-mineralogicheskih rabot. Laboratornye i tehno-logicheskie issledovanija mineral'nogo syr'ja: Obzor: M., AO «Geoinformmark». 1993. S. 39.
4. Nikolaev V.I. i t.d. Ob ocenke razmerov nanochastic s pomoshh'ju jeffekta Messbaujera. Fizika tverdogo tela. 2001. T. 43. Vyp. 8. S. 1455 – 1457.
5. Nuriev A.V. Razrabotka osnov tehnologii poluchenija magnitnogo polimernogo nanokompozita «Magnetit v matrice polivinilovogo spirta»: dis. … kand. tehn. nauk. Moskva: NITU MISiS, 2013.
6. Selivanov V.N., Smyslov E.F. Rentgenograficheskij analiz raspredelenija sfericheskih kristallitov. Kristallo-grafija. 1993. T. 38. № 3. S. 174.
7. Gabbasov R., Cherepanov V., Chuev M. et. al. Size effect of Mössbauer parameters in iron oxide na-noparticles. Hyperfine Interact. 2014. Vol. 226. P. 383 – 387.
8. Huang H., Wang J., Yao R. e.a. Effects of divalent heavy metal cations on the synthesis and character-istics of magnetite. Chemical Geology. 2020. Vol. 547. № 119669.
9. Iconaru S.L., Beuran M., Turculet C.S. et. al. Application of Biocompatible Magnetite Nanoparticles for the Removal of Arsenic and Copper from Water. AIP Conference Proceedings. 2018. Vol. 1932. № 1. P. 1 – 4.
10. Malik H., Qureshi U.A., Muqeet M. et. al. Removal of lead from aqueous solution using polyacrylo-nitrile/magnetite nanofibers. Environ. Sci. Pollut. Res. 2017. Vol. 25. № 4. P. 3557 – 3564.
11. Robinson M.R., Abdelmoula M., Mallet M. et. al. Starch functionalized magnetite nanoparticles: New insight into the structural and magnetic properties. Journal of Solid State Chemistry. 2019. Vol. 277. P. 587 – 593.
12. Zhao R., Li X., Li Y. et. al. Functionalized magnetic iron oxide/polyacrylonitrile composite electrospun fi-bers as effective chromium (VI) adsorbents for water purification. J. of Colloid and Interface Sc. 2017. Vol. 505. P. 1018 – 1030.
2. Kozlov V.V. i t.d. O sinteze nanokompozita Fe3O4/C na osnove poliakrilonitrila i FeCl2·4H2O pri termoobrabotke na vozduhe. East European Scientific Journal. 2018. Vol. 7. P. 66 – 72.
3. Korovushkin V.V. JaGR-spektroskopija v praktike geologo-mineralogicheskih rabot. Laboratornye i tehno-logicheskie issledovanija mineral'nogo syr'ja: Obzor: M., AO «Geoinformmark». 1993. S. 39.
4. Nikolaev V.I. i t.d. Ob ocenke razmerov nanochastic s pomoshh'ju jeffekta Messbaujera. Fizika tverdogo tela. 2001. T. 43. Vyp. 8. S. 1455 – 1457.
5. Nuriev A.V. Razrabotka osnov tehnologii poluchenija magnitnogo polimernogo nanokompozita «Magnetit v matrice polivinilovogo spirta»: dis. … kand. tehn. nauk. Moskva: NITU MISiS, 2013.
6. Selivanov V.N., Smyslov E.F. Rentgenograficheskij analiz raspredelenija sfericheskih kristallitov. Kristallo-grafija. 1993. T. 38. № 3. S. 174.
7. Gabbasov R., Cherepanov V., Chuev M. et. al. Size effect of Mössbauer parameters in iron oxide na-noparticles. Hyperfine Interact. 2014. Vol. 226. P. 383 – 387.
8. Huang H., Wang J., Yao R. e.a. Effects of divalent heavy metal cations on the synthesis and character-istics of magnetite. Chemical Geology. 2020. Vol. 547. № 119669.
9. Iconaru S.L., Beuran M., Turculet C.S. et. al. Application of Biocompatible Magnetite Nanoparticles for the Removal of Arsenic and Copper from Water. AIP Conference Proceedings. 2018. Vol. 1932. № 1. P. 1 – 4.
10. Malik H., Qureshi U.A., Muqeet M. et. al. Removal of lead from aqueous solution using polyacrylo-nitrile/magnetite nanofibers. Environ. Sci. Pollut. Res. 2017. Vol. 25. № 4. P. 3557 – 3564.
11. Robinson M.R., Abdelmoula M., Mallet M. et. al. Starch functionalized magnetite nanoparticles: New insight into the structural and magnetic properties. Journal of Solid State Chemistry. 2019. Vol. 277. P. 587 – 593.
12. Zhao R., Li X., Li Y. et. al. Functionalized magnetic iron oxide/polyacrylonitrile composite electrospun fi-bers as effective chromium (VI) adsorbents for water purification. J. of Colloid and Interface Sc. 2017. Vol. 505. P. 1018 – 1030.

English
Русский