Colloidal protection of magnetite hydrosols with polysaccharides
Abstract
This article investigates the stabilization of aqueous dispersions of magnetic Fe₃O₄ nanoparticles using polysaccharide stabilizers. The effect of electrolyte coagulants and polysaccharide stabilizers on the stability of magnetite hydrosols and their stability at physiological pH with and without the addition of polysaccharides is stud-ied. The results demonstrate the effectiveness of nonionic polysaccharides, such as hydroxypropyl methylcellulose and hydroxyethylcellulose, in stabilizing magnetic nanoparticles from electrolyte coagulation and over time, which is important for their application in medicine.
Objectives. To obtain and characterize magnetite hydrosols and to study their stabilization with polysaccharides over time and with the addition of non-indifferent and indifferent electrolytes.
Methods. Hydrosol coagulation was studied photometrically. The size of hydrosol nanoparticles was determined using dynamic light scattering.
Results. Nonionic polysaccharides, such as hydroxyethyl cellulose and hydroxypropyl methylcellulose, are promising for stabilizing aqueous dispersions (hydrosols) of Fe3O4 magnetic nanoparticles.
Conclusions. The coagulation threshold of magnetite hydrosol with a non-differentiated electrolyte, sodium hy-droxide, is 20,5 times lower than the coagulation threshold of magnetite hydrosol with an indifferent electrolyte, sodium chloride. Hydroxyethyl cellulose and hydroxypropyl methylcellulose exhibited the greatest protection of magnetite hydrosol from coagulation with sodium chloride. Hydroxypropyl methylcellulose exhibited the greatest protection of magnetite hydrosol from coagulation with sodium hydroxide. Sols containing hydroxypropyl methyl-cellulose exhibit the greatest stability over time at pH 7.4 (the pH of blood), created by the addition of a phosphate-buffered saline mixture.
Objectives. To obtain and characterize magnetite hydrosols and to study their stabilization with polysaccharides over time and with the addition of non-indifferent and indifferent electrolytes.
Methods. Hydrosol coagulation was studied photometrically. The size of hydrosol nanoparticles was determined using dynamic light scattering.
Results. Nonionic polysaccharides, such as hydroxyethyl cellulose and hydroxypropyl methylcellulose, are promising for stabilizing aqueous dispersions (hydrosols) of Fe3O4 magnetic nanoparticles.
Conclusions. The coagulation threshold of magnetite hydrosol with a non-differentiated electrolyte, sodium hy-droxide, is 20,5 times lower than the coagulation threshold of magnetite hydrosol with an indifferent electrolyte, sodium chloride. Hydroxyethyl cellulose and hydroxypropyl methylcellulose exhibited the greatest protection of magnetite hydrosol from coagulation with sodium chloride. Hydroxypropyl methylcellulose exhibited the greatest protection of magnetite hydrosol from coagulation with sodium hydroxide. Sols containing hydroxypropyl methyl-cellulose exhibit the greatest stability over time at pH 7.4 (the pH of blood), created by the addition of a phosphate-buffered saline mixture.

English
Русский