Energy-efficient nanocomposite membrane-electrode blocks for chemical current sources
Abstract
Electrode materials based on platinum metal nanoparticles are widely used to create alternative energy sources with high specific characteristics. Industrial carbon-containing carriers and perfluorinated proton exchange membranes of the Nafion type are used as matrices for the fuel cell electrodes formation. In this work, new effective polymer-carbon catalysts modified with platinum nanoparticles have been synthesized. Physicochemical and functional characteristics of nanocomposites have been studied by electron microscopy, X-ray phase analysis, small-angle X-ray scattering and cyclic voltammetry. Increased catalytic activity and stability of the formed electrodes in hydrogen-oxygen fuel cells had been found. The test results of hydrogen-air fuel cells in model operating conditions had been obtained. The current density maximum parameters of the membrane-electrode assemblies had been found for nanocomposites formed on multi-walled carbon nanotubes with a solubilization coefficient of ω equal to 1.5 and a platinum content of 0.35 mg/cm2. The creation of new membrane-electrode assemblies helps to reduce the cost of chemical current sources, as well as increase their energy efficiency.