7-15 p.
The creation of effective materials for the functioning of new chemical power sources is currently an urgent task. Fuel cells can use environmentally friendly and energy resources, such as hydrogen and carbon biofuels (methanol and ethanol), which have a wide range of potential applications from portable devices to power plants. The researcher’s attention is attracted by the development of methanol fuel cells, due to their compact design, liquid fuel, low operating temperature and high specific power. However, commercialization of such energy sources is still a difficult task due to the high platinum content on the electrodes, the high cost of precious metals, low durability and delayed kinetics of both anode and cathode reactions. Increasing the activity and reducing the Pt load are two main tasks in the development of methanol fuel cell technology. In the work, bimetallic Pt-Ru nanoparticles were synthesized by chemical reduction in reversed microemulsions to evaluate the parameters of methanol fuel cells. A porous nickel was used as a carrier matrix, which was formed by template synthesis in a dimensional mask of metallic aluminum. As a result of experimental studies of methanol membrane-electrode assemblies of fuel cells based on porous nickel with Pt and Pt-Ru nanoparticles, it was concluded that the maximum voltage and current density are achieved when using electrodes based on platinum-ruthenium nanoparticles with a particle size of no more than 3 nm, a catalyst content of 0.2 mg/cm2 and a process temperature of 60oC.
1. Rajendran S., Naushad M., Vo D.-V.N., Lichtfouse E. Inorganic Materials for Energy, Medicine and Envi-ronmental Remediation. Springer, 2021. 273 p.
2. Jackson C., Conrad O., Levecque P. Systematic Study of Pt-Ru. C Catalysts Prepared by Chemical Deposition for Direct Methanol Fuel Cells. Electrocatalysis. 2017. V. 8. P. 224 – 234.
3. Yashtulov N.A., Lebedeva M.V., Zenchenko V.O., Flid V.R. Formirovanie elektrodnyh materialov s bimetal-licheskimi nanochasticami platiny i ruteniya na polimernyh matricah. Izvestiya VU-Zov. Himiya i himicheskaya tekhnologiya. 2015. T. 58. № 4. S. 54 – 58.
4. Samant P., Fernandes J.B. Insitu FTIR studies for the enhanced activity of Pt(HY) and Pt-Ru(HY) zeolite cat-alysts for electrooxidation of methanol in fuel cells. Chemical Physics Letters. 2020. V. 745. P. 137277.
5. Battirola L.C., Schneider J.F., Torriani I.C.L., Tremiliosi-Filho G. Improvement on direct ethanol fuel cell performance by using doped-Nafion 117 membranes with Pt and Pt-Ru nanoparticles. International Journal of Hy-drogen Energy. 2013. V. 38. № 27. P. 12060 – 12068
6. Halder A., Sharma S., Hegde M.S., Ravishankar N. Controlled attachment of ultrafine platinum nano-particles on functionalized carbon nanotubes with high electrocatalytic activity for methanol oxidation. J. Phys. Chem. C. 2009. V. 113. № 4. P. 1466 – 1473.
7. Borghei M., Scotti G., Kanninen P., Weckman T., Anoshkin I.V., Nasibulin A.G., Franssila S., Kauppinen E.I., Kallio T., Ruiz V. Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes. Energy. 2014. V. 65. № 1. P. 612 – 620.
8. Lin C.W., Lu Y.S. Highly ordered graphene oxide paper laminated with a Nafion membrane for direct metha-nol fuel cells. Journal of Power Sources. 2013. V. 237. P. 187 – 194.
9. Dong L.F., Gari R.R.S., Li Z., Craig M.M., Hou S. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon. 2010. V. 48. № 3. P. 781 – 787.
10. Tiwari J.N., Tiwari R.N., Singh G., Kim K.S. Recent progress in the development of anode and cathode cat-alysts for direct methanol fuel cells (review). Nano Energy. 2013. V. 2. P. 553 – 578.
11. Cao Y., Yang Y., Shan Y., Huang Z. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nano-particles as Excellent Electrocatalysts for Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces. 2016. V. 8. № 9. R. 5998 – 6003.
12. Jeong H.J., Kim J.W., Bae K., Jung H., Shim J.H. Platinum-Ruthenium Heterogeneous Catalytic Anodes Prepared by Atomic Layer Deposition for Use in Direct Methanol Solid Oxide Fuel Cells. ACS Catalysis. 2015. V. 5. № 3. R. 1914 – 1921.
13. Antropov A.P., Ragutkin A.V., Lebedeva M.V., Zajcev N.K., Yashtulov N.A. Razrabotka membranno-elektrodnyh blokov dlya energoeffektivnyh avtonomnyh istochnikov energii. Bashkirskij himicheskij zhurnal. 2021. T. 28. № 3. S. 90 – 96.
14. Lebedeva M.V., Antropov A.P., Ragutkin A.V., Zajcev N.K., Yashtulov N.A. Razrabotka elektrodnyh na-nomaterialov dlya shchelochnogo elektroliza vody. Teoreticheskie osnovy himicheskoj tekhnologii. 2021. T. 55. № 5. S. 642 – 651.
2. Jackson C., Conrad O., Levecque P. Systematic Study of Pt-Ru. C Catalysts Prepared by Chemical Deposition for Direct Methanol Fuel Cells. Electrocatalysis. 2017. V. 8. P. 224 – 234.
3. Yashtulov N.A., Lebedeva M.V., Zenchenko V.O., Flid V.R. Formirovanie elektrodnyh materialov s bimetal-licheskimi nanochasticami platiny i ruteniya na polimernyh matricah. Izvestiya VU-Zov. Himiya i himicheskaya tekhnologiya. 2015. T. 58. № 4. S. 54 – 58.
4. Samant P., Fernandes J.B. Insitu FTIR studies for the enhanced activity of Pt(HY) and Pt-Ru(HY) zeolite cat-alysts for electrooxidation of methanol in fuel cells. Chemical Physics Letters. 2020. V. 745. P. 137277.
5. Battirola L.C., Schneider J.F., Torriani I.C.L., Tremiliosi-Filho G. Improvement on direct ethanol fuel cell performance by using doped-Nafion 117 membranes with Pt and Pt-Ru nanoparticles. International Journal of Hy-drogen Energy. 2013. V. 38. № 27. P. 12060 – 12068
6. Halder A., Sharma S., Hegde M.S., Ravishankar N. Controlled attachment of ultrafine platinum nano-particles on functionalized carbon nanotubes with high electrocatalytic activity for methanol oxidation. J. Phys. Chem. C. 2009. V. 113. № 4. P. 1466 – 1473.
7. Borghei M., Scotti G., Kanninen P., Weckman T., Anoshkin I.V., Nasibulin A.G., Franssila S., Kauppinen E.I., Kallio T., Ruiz V. Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes. Energy. 2014. V. 65. № 1. P. 612 – 620.
8. Lin C.W., Lu Y.S. Highly ordered graphene oxide paper laminated with a Nafion membrane for direct metha-nol fuel cells. Journal of Power Sources. 2013. V. 237. P. 187 – 194.
9. Dong L.F., Gari R.R.S., Li Z., Craig M.M., Hou S. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon. 2010. V. 48. № 3. P. 781 – 787.
10. Tiwari J.N., Tiwari R.N., Singh G., Kim K.S. Recent progress in the development of anode and cathode cat-alysts for direct methanol fuel cells (review). Nano Energy. 2013. V. 2. P. 553 – 578.
11. Cao Y., Yang Y., Shan Y., Huang Z. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nano-particles as Excellent Electrocatalysts for Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces. 2016. V. 8. № 9. R. 5998 – 6003.
12. Jeong H.J., Kim J.W., Bae K., Jung H., Shim J.H. Platinum-Ruthenium Heterogeneous Catalytic Anodes Prepared by Atomic Layer Deposition for Use in Direct Methanol Solid Oxide Fuel Cells. ACS Catalysis. 2015. V. 5. № 3. R. 1914 – 1921.
13. Antropov A.P., Ragutkin A.V., Lebedeva M.V., Zajcev N.K., Yashtulov N.A. Razrabotka membranno-elektrodnyh blokov dlya energoeffektivnyh avtonomnyh istochnikov energii. Bashkirskij himicheskij zhurnal. 2021. T. 28. № 3. S. 90 – 96.
14. Lebedeva M.V., Antropov A.P., Ragutkin A.V., Zajcev N.K., Yashtulov N.A. Razrabotka elektrodnyh na-nomaterialov dlya shchelochnogo elektroliza vody. Teoreticheskie osnovy himicheskoj tekhnologii. 2021. T. 55. № 5. S. 642 – 651.