28-47 стр.
Проблема увеличения степени извлечения нефти из пластов-коллекторов остается актуальной на протяжении нескольких последних десятилетий.
В настоящее время наблюдается стремительный рост интереса к химическим методам увеличения нефтеотдачи для интенсификации добычи нефти, в частности, заводнения поверхностно-активными веществами (ПАВ).
В настоящей статье описываются факторы, влияющие на эффективность ПАВ-заводнения, и эффект адсорбции на экономическую составляющую технологии. Для решения проблемы адсорбции, препятству-ющей масштабному внедрению ПАВ-заводнения, предлагается использование технологии микрокапсулиро-вания ПАВ в твердую оболочку.
В настоящее время наблюдается стремительный рост интереса к химическим методам увеличения нефтеотдачи для интенсификации добычи нефти, в частности, заводнения поверхностно-активными веществами (ПАВ).
В настоящей статье описываются факторы, влияющие на эффективность ПАВ-заводнения, и эффект адсорбции на экономическую составляющую технологии. Для решения проблемы адсорбции, препятству-ющей масштабному внедрению ПАВ-заводнения, предлагается использование технологии микрокапсулиро-вания ПАВ в твердую оболочку.
1. Thomas S. Enhanced oil recovery – an overview // Oil and Gas Science and Technology. 2007. Vol. 63. P. 9 – 19.
2. Levitt D., Pope G.A. Selection and screening of polymers for enhanced-oil recovery // SPE Symposium on Improved Oil Recovery. 2008. Vol. 3. P. 20 – 23.
3. Gbadamosi A.O., Kiwalabye J., Junin R., Augustine A. A review of gas enhanced oil recovery schemes used in the North Sea // Journal of Petroleum Exploration and Production Technology. 2018. Vol. 5. P. 1 – 15.
4. Gbadamosi A.O., Junin R., Manan M., Agi A., Yusuff A. An overview of chemical enhanced oil recovery: recent advances and prospects // International Nano Letters. 2019. Vol. 9. P. 171 – 202.
5. Yernazarova A., Kaiyrmanova G., Baubekova A., Zhubanova A.A. Microbial enhanced oil recovery // In book: Chemical Enhanced Oil Recovery (cEOR) – a Practical Overview. 2016. P. 148 – 166.
6. Thomas S., Farouq A.S. Micellar flooding and ASP-chemical methods for enhanced oil recovery // Journal of Canadian Petroleum Technology. 2001. Vol. 40 (2). P. 46 – 52.
7. Mandal A., Samanta A., Ojha K. Mobility control and enhanced oil recovery using partially hydrolysed poly-acrylamide (PHPA) // International Journal of Oil, Gas and Coal Technology. 2013. Vol. 6 (3). P. 245 – 258.
8. Abbas A.H., Sulaiman W.R.W., Jaafar M.Z., Gbadamosi A.O., Ebrahimi S.S., Elrufai A. Numerical study for continuous surfactant flooding considering adsorption in heterogeneous reservoir // Journal of King Saud Universi-ty – Engineering Sciences. 2018. Vol. 5. P. 1 – 9.
9. Gong H., Li Y., Dong M., Ma S., Liu W. Effect of wettability alteration on enhanced heavy oil recovery by alkaline flooding // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2016. Vol. 488. P. 28 – 35.
10. Azam M.R., Tan I.M., Ismail L., Mushtaq M., Nadeem M., Sagir M. Static adsorption of anionic surfactant onto crushed Berea sandstone // Journal of Petroleum Exploration and Production Technology. 2013. Vol. 3 (3). P. 195 − 201.
11. Kamal M., Hussein I., Sultan A. Review on surfactant flooding: Phase behavior, retention, IFT, and field applications // Energy and Fuels. 2017. Vol. 31 (8). P. 7701 – 7720.
12. Tavakkoli O., Kamyab H., Shariati M. Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: A review // Fuel. 2022. Vol. 321. P. 122867.
13. Tabaeh Havavi M., Kazemzadeh Y., Riazi M. Application of surfactant-based enhanced oil recovery in car-bonate Reservoirs: A critical review of the opportunities and challenges // Chemical Physics Letters. 2022. Vol. 806 (1). P. 124090.
14. Shakeel M., Samanova A., Pourafshary P., Hashmet M. Optimization of low salinity water/surfactant flood-ing design for oil-wet carbonate reservoirs by introducing a negative salinity gradient // Energies. 2022. Vol. 15 (24). P. 9400.
15. Pashapurieganeh F., Zargar G., Kadkholate A., Rabiee A., Misaghi. A., Zakariaei S. Experimental evaluation of designed and synthesized Alkaline-Surfactant-polymer (ASP) for chemical flooding in carbonate reservoirs // Fuel. 2022. Vol. 321. P. 1 – 17.
16. Adila A., Ai-Shalabi E., AlAmeri W. Recent developments in surfactant flooding for carbonate reservoirs under harsh conditions // Offshore Technology Conference Asia. Malaysia. 2020.
17. Sheng J.J. Status of surfactant EOR technology // Petroleum. 2015. Vol. 1 (2). P. 97 − 105.
18. Wu Y., Iglauer S., Shuler P., Tang Y., Goddard W. A. Branched alkyl alcohol propoxylated sulfate surfac-tants for improved oil recovery // Tenside, Surfactants, Detergents. 2010. Vol. 47(3). P. 152 − 161.
19. Yu Q., Jiang H., Zhao C. Study of interfacial tension between oil and surfactant polymer flooding // Petrole-um Science Technologies. 2010. Vol. 28(18). P. 1846 – 1854.
20. Guo H., Song K., Hilfer R. A brief review of capillary number and its use in capillary desaturation curves // Transport in Porous Media. 2022. Vol. 144(1). P. 3 – 31.
21. Howe A. M., Clarke A., Mitchell J., Staniland J., Hawkes L., Whalan C. Visualising surfactant enhanced oil recovery // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015. Vol. 480. P. 449 – 461.
22. Hou J., Liu Z., Zhang S., Yue X., Yang J. The role of viscoelasticity of alkali/surfactant/polymer solutions in enhanced oil recovery // Journal of Petroleum Science and Engineering. 2005. Vol. 47 (3-4). P. 219 − 235.
23. Daoshan L., Shouliang L., Yi L., Demin, W. The effect of biosurfactant on the interfacial tension and ad-sorption loss of surfactant in ASP flooding // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004. Vol. 244 (1-3). P. 53 – 60.
24. Wanli K., Yi L., Baoyan Q., Guangzhi L., Zhenyu Y., Jichun H. Interactions between alka-li/surfactant/polymer and their effects on emulsion stability // Colloids and Surfaces A: Physicochemical and Engi-neering Aspects. 2000. Vol. 175 (1-2). P. 243 − 247.
25. Bortolotti, V.; Macini, P.; Srisuriyachai, F. Laboratory evaluation of alkali and alkali-surfactant-polymer flooding combined with intermittent flow in carbonatic rocks // Asia Pacific Oil and Gas Conference & Exhibition. 2009. Vol. 1. P. 366 – 378.
26. Nesmerak K., Nemcova Irena Determination of critical micelle concentration by electrochemical means // Analytical Letters. Vol. 39 (6). P. 1023 – 1040.hl
27. Miquilena A., Coll V., Borges A., Melendez J., Zeppieri S. Influence of drop growth rate and size on the in-terfacial tension of Triton X-100 solutions as a function of pressure and temperature // International Journal of Thermophysics. 2010. Vol. 31 (11-12). P. 2416 – 2424.
28. Aoudia M., Al-Maamari R. S., Nabipour M., Al-Bemani A. S., Ayatollahi S. Laboratory study of alkyl ether sulfonates for improved oil recovery in high-salinity carbonate reservoirs: A case study // Energy Fuels. 2010. Vol. 24 (6). P. 3655 − 3660.
29. Benzagouta M., Kadnanda W., AlQuraishiA., Amro M. Effect of temperature, pressure, salinity, and surfac-tant concentration on IFT for surfactant flooding optimization // Arabian Journal of Geoscience. 2013. Vol. 6 (9). P. 3535 – 3544.
30. El-Batanoney M., Abdel-Moghny T., Ramzi M. The effect of mixed surfactants on enhancing oil recovery // Journal of Surfactants and Detergents. 1999. Vol. 2 (2). P. 201 – 205.
31. Hosseni S., Shuker M.T., Tomocene J. The role of salinity and brine ions in interfacial tension reduction while using surfactant for enhanced oil recovery // Research Journal of Applied Science, Engineering and Technol-ogy. 2015. Vol. 9 (9). P. 722 – 726.
32. Wu Y., Iglauer S., Shuler P., Tang Y., Goddard W. A. Branched alkyl alcohol propoxylated sulfate surfac-tants for improved oil recovery // Tenside, Surfactants, Detergents. 2010. Vol. 47 (3). P. 152 − 161.
33. Li G., Mu J., Li Y., Yuan S. An experimental study on alkaline/surfactant/polymer flooding systems using nature mixed carboxylate // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000. Vol. 173 (1-3). P. 219 – 229.
34. Gao B., Sharma M. A family of alkyl sulfate gemini surfactants. 2. Water-oil interfacial tension reduction // Journal of Colloid and Interface Science. 2013. Vol. 407. P. 375 – 381.
35. Li G., Mu J., Li Y. An experimental study on alkaline/surfactant/polymer flooding systems using nature mixed carboxylate // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000. Vol. 173 (1-3). P. 219 – 229.
36. Chang L., Pope G. A new surfactant wettability alteration model for reservoir simulators // Journal of Sur-factants and Detergents. 2023. Vol. 26 (3). P. 437 – 451.
37. Lag J., Hadas A., Fairbridge R.W., Novoa Munoz J.C. Hydrophilicity, hydrohobisity // In book: Encyclope-dia of Soil Science. 2008. P. 329-330.
38. Standnes D.C., Austad T. Wettability alteration in chalk: 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants // Journal of Petroleum Science and Engineering. 2000. Vol. 28 (3). P. 123 – 143.
39. Moisio M.T., Clouse J.A., Longo M.J. Adsorption of organic compounds on carbonate minerals: 1. Model compounds and their influence on mineral wettability // Chemical Geology. 1993 Vol. 109 (1) Р. 201 – 213.
40. Standnes С.D., Austad Т. Wettability alteration in chalk: 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants // Journal of Petroleum Science and Engineering. 2000 Vol. 28 (3). Р. 123 − 143.
41. Barati-Harooni A., Najafi-Marghmaleki A.; Tatar, A.; Mohammadi, A. H. Experimental and modeling stud-ies on adsorption of a nonionic surfactant on sandstone minerals in enhanced oil recovery process with surfactant flooding // Journal of Molecular Liquids. 2016. Vol. 220. P. 1022 − 1032.
42. Budhathoki M., Barnee S. H. R., Shiau B.-J., Harwell, J. H. Improved oil recovery by reducing surfactant adsorption with polyelectrolyte in high saline brine // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2016. Vol. 498. P. 66 – 73.
43. AlSofi A., Fuseni A., Zhou X., Hassan S. Development of chemical EOR formulations for a high tempera-ture and high salinity carbonate reservoir // Society of Petroleum Engineers - International Petroleum Technology Conference 2013, IPTC 2013: Challenging Technology and Economic Limits to Meet the Global Energy Demand. 2013. Vol. 6. P. 4946 – 4958.
44. Biswas S.C., Chattoraj D. K. Kinetics of adsorption of cationic surfactants at silica-water interface // Journal of Colloid and Interface Science. 1998. Vol. 205 (1). Р. 12 − 20.
45. Somasundaran P., Huang L. Adsorption/aggregation of surfactants and their mixtures at solid-liquid inter-faces // Advances in Colloid and Interface Science. 2000. Vol. 88 (1). Р. 179 − 208.
46. Azam M. R., Tan I. M., Ismail L., Mushtaq M., Nadeem M., Sagir M. Static adsorption of anionic surfactant onto crushed Berea sandstone // Journal of Petroleum Exploration and Production Technology. 2013. Vol. 3 (3). Р. 195 − 201.
47. Kalam S., Abu-Khamsin S.A., Pati S. Surfactant adsorption isotherms: A review // ACS Omega. 2012. Vol. 6 (48). Р. 32342 – 32348.
48. Solairaj S., Britton C., Kim D. H., Weerasooriya U., Pope G. A. Measurement and analysis of surfactant re-tention // SPE – DOE Improved Oil Recovery Symposium Proceedings. 2012. Vol. 2. Р. 294 – 1310.
49. Golub T., Koopal L., Sidorova M. Adsorption of cationic surfactants on silica surface: 1. Adsorption iso-therms and surface charge // Colloid Journal. 2004. Vol. 66 (1). P. 38 – 43.
50. Ruthven D. Principles of adsorption and adsorption processes // Chemical Engineering and Processing: Pro-cess Intensification. 1985. Vol. 19 (2). Р. 118.
51. Elmorsi T.M. Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption on-to miswak leaves as a natural adsorbent // Journal of Environmental Protection. 2011. Vol. 2 (6). Р. 817 − 827.
52. Foo K.Y., Hameed B.H. Insights into the modeling of adsorption isotherm system // Chemical Engineering Journal. 2010. Vol. 156 (1). Р. 2 − 10.
53. Temkin M., Pyzhev V. Recent modifications to Langmuir isotherms // Acta Physiochem. USSR. 1940. Vol. 12. Р. 217−222.
54. Bakry A., Abbas S., Ali B. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications // Comprehensive Reviews in Food Science and Food Safety. 2016. Vol. 15 (1). P. 143 – 182.
55. Hu M., Guo J., Xu Y. Research advances of microencapsulation and its prospects in the petroleum industry // Materials. 2017. Vol. 10 (4). Р. 1 − 19.
56. Choudhury N., Meghwal M., Das K. Microencapsulation: An overview on concepts, methods, properties and applications in foods // Food Frontiers. 2021. Vol. 2 (4). Р. 426 – 442.
57. Thompson E.K., Korbmacher P.J., Frick M. Fusion-activated cation entry (FACE) via P2X(4) couples sur-factant secretion and alveolar fluid transport // FASEB Journal. 2013. Vol. 27 (4). Р. 1772 – 1783.
58. Kittisrisawai S., Romero-Zerón L. B. Complexation of surfactant/β-cyclodextrin to inhibit surfactant adsorp-tion onto sand, kaolin, and shale for applications in enhanced oil recovery processes. Part II: Dynamic adsorption analysis // Journal of Surfactants and Detergents. 2015. Vol. 18. Р. 783 − 795.
59. Loftsson T., Saokham P., Sa Couto A. Self-association of cyclodextrins and cyclodextrin complexes // Inter-national Journal of Pharmaceutics. 2004. Vol. 93. P. 1091 – 1099.
60. Hatami Boura S., Peikari M., Ashrafi A. Self-healing ability and adhesion strength of capsule embedded coatings micro and nano sized capsules containing linseed oil // Progress in Organic Coatings. 2012. Vol. 75 (4). P. 292 – 300.
61. Hermas A., Al-Juaid S., Al-Thabaiti S., Qusti A., Abdel Salam M. In situ electropolymerization of conduct-ing polypyrrole/carbon nanotubes composites on stainless steel: Role of carbon nanotubes types // Progress in Or-ganic Coatings. 2012. Vol. 75 (4). P. 404 – 410.
62. Brown E., Kessler M., Sottos N. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene // Journal of Microencapsulation. 2003. Vol. 20 (6). P. 719 – 730.
63. Mallakpour S., Dinari M. Fabrication of polyimide/titania nanocomposites containing benzimidazole side groups via sol–gel process // Progress in Organic Coatings. 2012. Vol. 75 (4). P. 373 – 378.
64. Yu H., Xue C., Qin Y., Wen Y., Zhang L., Li Y. Preparation and performance of green targeted microcap-sules encapsulating surfactants // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. Vol. 623. P. 1 – 8.
65. Maravajhala V., Dasari N., Sepuri A., Joginapalli S. Design and evaluation of niacin microspheres // Indian Journal of Pharmaceutical Sciences. 2009. Vol. 71 (6). P. 663 – 669.
66. Julaeha E., Nugeraha R., Nurzaman M., Kurnia D., Wahyudi T., Rosandi Y. Characterization of ethyl cellu-lose (EC) microcapsules for lime oil encapsulation // Journal of Physics: Conference Series. 2018. Vol. 1080 (1). P. 1 – 5.
67. Rosestolato J., Perez-Gramatges A., Lachter E., Nascimento R. Lipid nanostructures as surfactant carriers for enhanced oil recovery // Fuel. 2019. Vol. 239. P. 403 – 412.
68. Xu Q., Yang Y., Lu J., Lin Y., Feng S., Luo X., Di D., Wang S., Zhao Q. Recent trends of mesoporous silica-based nanoplatforms for nanodynamic therapies // Coordination Chemistry Reviews. Vol. 469. P. 1 – 8.
69. Manzano M., Vallet-Regi M. Mesoporous silica nanoparticles for drug delivery // Advanced Functional Ma-terials. 2020. V. 30 (2). P. 1 – 13.
70. Zhang Y., Zheng S., Zhu S., Ma J., Sun Z., Farid M. Evaluation of paraffin infiltrated in various porous sili-ca matrices as shape stabilized phase change materials for thermal energy storage // Energy Conversion and Man-agement. 2018. Vol. 171. P. 361 – 370.
71. Chen F., Gong A., Zhu M., Chen G., Lacey S., Jiang F., Li Y., Wang Y., Dai J., Yao Y., Song J., Liu B., Fu K., Das S., Hu L. Mesoporous, Three-dimensional wood membrane decorated with nanoparticles for highly effi-cient water treatment // ACS Nano. 2017. Vol. 11 (4). P. 4275 – 4282.
72. Alsmaeli A., Hammami M., Enotiadis A., Kanj M., Giannelis E. Encapsulation of an anionic surfactant into hollow spherical nanosized capsules: size control, slow release, and potential use for enhanced oil recovery. Appli-cations and environmental remediation // ACS Omega. 2021. Vol. 6 (8). P. 5689 – 5697.
73. Kittisrisawai S., Romero-Zerón L.B. Complexation of surfactant/β-cyclodextrin to inhibit surfactant adsorp-tion onto sand, kaolin, and shale for applications in enhanced oil recovery processes. Part II: dynamic adsorption analysis // Journal of Surfactants and Detergents. 2015. Vol. 18 (5). P. 783 – 795.
74. Romero-Zeron L., Wadhani D., Sethiya R. Formulation of an encapsulated surfactant system, ESS, via β-CD host-guest interactions to inhibit surfactant adsorption onto solid surfaces // Industrial and Engineering Chemistry Research. 2020. Vol. 59 (35). P. 15542 – 15555.
2. Levitt D., Pope G.A. Selection and screening of polymers for enhanced-oil recovery // SPE Symposium on Improved Oil Recovery. 2008. Vol. 3. P. 20 – 23.
3. Gbadamosi A.O., Kiwalabye J., Junin R., Augustine A. A review of gas enhanced oil recovery schemes used in the North Sea // Journal of Petroleum Exploration and Production Technology. 2018. Vol. 5. P. 1 – 15.
4. Gbadamosi A.O., Junin R., Manan M., Agi A., Yusuff A. An overview of chemical enhanced oil recovery: recent advances and prospects // International Nano Letters. 2019. Vol. 9. P. 171 – 202.
5. Yernazarova A., Kaiyrmanova G., Baubekova A., Zhubanova A.A. Microbial enhanced oil recovery // In book: Chemical Enhanced Oil Recovery (cEOR) – a Practical Overview. 2016. P. 148 – 166.
6. Thomas S., Farouq A.S. Micellar flooding and ASP-chemical methods for enhanced oil recovery // Journal of Canadian Petroleum Technology. 2001. Vol. 40 (2). P. 46 – 52.
7. Mandal A., Samanta A., Ojha K. Mobility control and enhanced oil recovery using partially hydrolysed poly-acrylamide (PHPA) // International Journal of Oil, Gas and Coal Technology. 2013. Vol. 6 (3). P. 245 – 258.
8. Abbas A.H., Sulaiman W.R.W., Jaafar M.Z., Gbadamosi A.O., Ebrahimi S.S., Elrufai A. Numerical study for continuous surfactant flooding considering adsorption in heterogeneous reservoir // Journal of King Saud Universi-ty – Engineering Sciences. 2018. Vol. 5. P. 1 – 9.
9. Gong H., Li Y., Dong M., Ma S., Liu W. Effect of wettability alteration on enhanced heavy oil recovery by alkaline flooding // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2016. Vol. 488. P. 28 – 35.
10. Azam M.R., Tan I.M., Ismail L., Mushtaq M., Nadeem M., Sagir M. Static adsorption of anionic surfactant onto crushed Berea sandstone // Journal of Petroleum Exploration and Production Technology. 2013. Vol. 3 (3). P. 195 − 201.
11. Kamal M., Hussein I., Sultan A. Review on surfactant flooding: Phase behavior, retention, IFT, and field applications // Energy and Fuels. 2017. Vol. 31 (8). P. 7701 – 7720.
12. Tavakkoli O., Kamyab H., Shariati M. Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: A review // Fuel. 2022. Vol. 321. P. 122867.
13. Tabaeh Havavi M., Kazemzadeh Y., Riazi M. Application of surfactant-based enhanced oil recovery in car-bonate Reservoirs: A critical review of the opportunities and challenges // Chemical Physics Letters. 2022. Vol. 806 (1). P. 124090.
14. Shakeel M., Samanova A., Pourafshary P., Hashmet M. Optimization of low salinity water/surfactant flood-ing design for oil-wet carbonate reservoirs by introducing a negative salinity gradient // Energies. 2022. Vol. 15 (24). P. 9400.
15. Pashapurieganeh F., Zargar G., Kadkholate A., Rabiee A., Misaghi. A., Zakariaei S. Experimental evaluation of designed and synthesized Alkaline-Surfactant-polymer (ASP) for chemical flooding in carbonate reservoirs // Fuel. 2022. Vol. 321. P. 1 – 17.
16. Adila A., Ai-Shalabi E., AlAmeri W. Recent developments in surfactant flooding for carbonate reservoirs under harsh conditions // Offshore Technology Conference Asia. Malaysia. 2020.
17. Sheng J.J. Status of surfactant EOR technology // Petroleum. 2015. Vol. 1 (2). P. 97 − 105.
18. Wu Y., Iglauer S., Shuler P., Tang Y., Goddard W. A. Branched alkyl alcohol propoxylated sulfate surfac-tants for improved oil recovery // Tenside, Surfactants, Detergents. 2010. Vol. 47(3). P. 152 − 161.
19. Yu Q., Jiang H., Zhao C. Study of interfacial tension between oil and surfactant polymer flooding // Petrole-um Science Technologies. 2010. Vol. 28(18). P. 1846 – 1854.
20. Guo H., Song K., Hilfer R. A brief review of capillary number and its use in capillary desaturation curves // Transport in Porous Media. 2022. Vol. 144(1). P. 3 – 31.
21. Howe A. M., Clarke A., Mitchell J., Staniland J., Hawkes L., Whalan C. Visualising surfactant enhanced oil recovery // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015. Vol. 480. P. 449 – 461.
22. Hou J., Liu Z., Zhang S., Yue X., Yang J. The role of viscoelasticity of alkali/surfactant/polymer solutions in enhanced oil recovery // Journal of Petroleum Science and Engineering. 2005. Vol. 47 (3-4). P. 219 − 235.
23. Daoshan L., Shouliang L., Yi L., Demin, W. The effect of biosurfactant on the interfacial tension and ad-sorption loss of surfactant in ASP flooding // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004. Vol. 244 (1-3). P. 53 – 60.
24. Wanli K., Yi L., Baoyan Q., Guangzhi L., Zhenyu Y., Jichun H. Interactions between alka-li/surfactant/polymer and their effects on emulsion stability // Colloids and Surfaces A: Physicochemical and Engi-neering Aspects. 2000. Vol. 175 (1-2). P. 243 − 247.
25. Bortolotti, V.; Macini, P.; Srisuriyachai, F. Laboratory evaluation of alkali and alkali-surfactant-polymer flooding combined with intermittent flow in carbonatic rocks // Asia Pacific Oil and Gas Conference & Exhibition. 2009. Vol. 1. P. 366 – 378.
26. Nesmerak K., Nemcova Irena Determination of critical micelle concentration by electrochemical means // Analytical Letters. Vol. 39 (6). P. 1023 – 1040.hl
27. Miquilena A., Coll V., Borges A., Melendez J., Zeppieri S. Influence of drop growth rate and size on the in-terfacial tension of Triton X-100 solutions as a function of pressure and temperature // International Journal of Thermophysics. 2010. Vol. 31 (11-12). P. 2416 – 2424.
28. Aoudia M., Al-Maamari R. S., Nabipour M., Al-Bemani A. S., Ayatollahi S. Laboratory study of alkyl ether sulfonates for improved oil recovery in high-salinity carbonate reservoirs: A case study // Energy Fuels. 2010. Vol. 24 (6). P. 3655 − 3660.
29. Benzagouta M., Kadnanda W., AlQuraishiA., Amro M. Effect of temperature, pressure, salinity, and surfac-tant concentration on IFT for surfactant flooding optimization // Arabian Journal of Geoscience. 2013. Vol. 6 (9). P. 3535 – 3544.
30. El-Batanoney M., Abdel-Moghny T., Ramzi M. The effect of mixed surfactants on enhancing oil recovery // Journal of Surfactants and Detergents. 1999. Vol. 2 (2). P. 201 – 205.
31. Hosseni S., Shuker M.T., Tomocene J. The role of salinity and brine ions in interfacial tension reduction while using surfactant for enhanced oil recovery // Research Journal of Applied Science, Engineering and Technol-ogy. 2015. Vol. 9 (9). P. 722 – 726.
32. Wu Y., Iglauer S., Shuler P., Tang Y., Goddard W. A. Branched alkyl alcohol propoxylated sulfate surfac-tants for improved oil recovery // Tenside, Surfactants, Detergents. 2010. Vol. 47 (3). P. 152 − 161.
33. Li G., Mu J., Li Y., Yuan S. An experimental study on alkaline/surfactant/polymer flooding systems using nature mixed carboxylate // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000. Vol. 173 (1-3). P. 219 – 229.
34. Gao B., Sharma M. A family of alkyl sulfate gemini surfactants. 2. Water-oil interfacial tension reduction // Journal of Colloid and Interface Science. 2013. Vol. 407. P. 375 – 381.
35. Li G., Mu J., Li Y. An experimental study on alkaline/surfactant/polymer flooding systems using nature mixed carboxylate // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000. Vol. 173 (1-3). P. 219 – 229.
36. Chang L., Pope G. A new surfactant wettability alteration model for reservoir simulators // Journal of Sur-factants and Detergents. 2023. Vol. 26 (3). P. 437 – 451.
37. Lag J., Hadas A., Fairbridge R.W., Novoa Munoz J.C. Hydrophilicity, hydrohobisity // In book: Encyclope-dia of Soil Science. 2008. P. 329-330.
38. Standnes D.C., Austad T. Wettability alteration in chalk: 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants // Journal of Petroleum Science and Engineering. 2000. Vol. 28 (3). P. 123 – 143.
39. Moisio M.T., Clouse J.A., Longo M.J. Adsorption of organic compounds on carbonate minerals: 1. Model compounds and their influence on mineral wettability // Chemical Geology. 1993 Vol. 109 (1) Р. 201 – 213.
40. Standnes С.D., Austad Т. Wettability alteration in chalk: 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants // Journal of Petroleum Science and Engineering. 2000 Vol. 28 (3). Р. 123 − 143.
41. Barati-Harooni A., Najafi-Marghmaleki A.; Tatar, A.; Mohammadi, A. H. Experimental and modeling stud-ies on adsorption of a nonionic surfactant on sandstone minerals in enhanced oil recovery process with surfactant flooding // Journal of Molecular Liquids. 2016. Vol. 220. P. 1022 − 1032.
42. Budhathoki M., Barnee S. H. R., Shiau B.-J., Harwell, J. H. Improved oil recovery by reducing surfactant adsorption with polyelectrolyte in high saline brine // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2016. Vol. 498. P. 66 – 73.
43. AlSofi A., Fuseni A., Zhou X., Hassan S. Development of chemical EOR formulations for a high tempera-ture and high salinity carbonate reservoir // Society of Petroleum Engineers - International Petroleum Technology Conference 2013, IPTC 2013: Challenging Technology and Economic Limits to Meet the Global Energy Demand. 2013. Vol. 6. P. 4946 – 4958.
44. Biswas S.C., Chattoraj D. K. Kinetics of adsorption of cationic surfactants at silica-water interface // Journal of Colloid and Interface Science. 1998. Vol. 205 (1). Р. 12 − 20.
45. Somasundaran P., Huang L. Adsorption/aggregation of surfactants and their mixtures at solid-liquid inter-faces // Advances in Colloid and Interface Science. 2000. Vol. 88 (1). Р. 179 − 208.
46. Azam M. R., Tan I. M., Ismail L., Mushtaq M., Nadeem M., Sagir M. Static adsorption of anionic surfactant onto crushed Berea sandstone // Journal of Petroleum Exploration and Production Technology. 2013. Vol. 3 (3). Р. 195 − 201.
47. Kalam S., Abu-Khamsin S.A., Pati S. Surfactant adsorption isotherms: A review // ACS Omega. 2012. Vol. 6 (48). Р. 32342 – 32348.
48. Solairaj S., Britton C., Kim D. H., Weerasooriya U., Pope G. A. Measurement and analysis of surfactant re-tention // SPE – DOE Improved Oil Recovery Symposium Proceedings. 2012. Vol. 2. Р. 294 – 1310.
49. Golub T., Koopal L., Sidorova M. Adsorption of cationic surfactants on silica surface: 1. Adsorption iso-therms and surface charge // Colloid Journal. 2004. Vol. 66 (1). P. 38 – 43.
50. Ruthven D. Principles of adsorption and adsorption processes // Chemical Engineering and Processing: Pro-cess Intensification. 1985. Vol. 19 (2). Р. 118.
51. Elmorsi T.M. Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption on-to miswak leaves as a natural adsorbent // Journal of Environmental Protection. 2011. Vol. 2 (6). Р. 817 − 827.
52. Foo K.Y., Hameed B.H. Insights into the modeling of adsorption isotherm system // Chemical Engineering Journal. 2010. Vol. 156 (1). Р. 2 − 10.
53. Temkin M., Pyzhev V. Recent modifications to Langmuir isotherms // Acta Physiochem. USSR. 1940. Vol. 12. Р. 217−222.
54. Bakry A., Abbas S., Ali B. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications // Comprehensive Reviews in Food Science and Food Safety. 2016. Vol. 15 (1). P. 143 – 182.
55. Hu M., Guo J., Xu Y. Research advances of microencapsulation and its prospects in the petroleum industry // Materials. 2017. Vol. 10 (4). Р. 1 − 19.
56. Choudhury N., Meghwal M., Das K. Microencapsulation: An overview on concepts, methods, properties and applications in foods // Food Frontiers. 2021. Vol. 2 (4). Р. 426 – 442.
57. Thompson E.K., Korbmacher P.J., Frick M. Fusion-activated cation entry (FACE) via P2X(4) couples sur-factant secretion and alveolar fluid transport // FASEB Journal. 2013. Vol. 27 (4). Р. 1772 – 1783.
58. Kittisrisawai S., Romero-Zerón L. B. Complexation of surfactant/β-cyclodextrin to inhibit surfactant adsorp-tion onto sand, kaolin, and shale for applications in enhanced oil recovery processes. Part II: Dynamic adsorption analysis // Journal of Surfactants and Detergents. 2015. Vol. 18. Р. 783 − 795.
59. Loftsson T., Saokham P., Sa Couto A. Self-association of cyclodextrins and cyclodextrin complexes // Inter-national Journal of Pharmaceutics. 2004. Vol. 93. P. 1091 – 1099.
60. Hatami Boura S., Peikari M., Ashrafi A. Self-healing ability and adhesion strength of capsule embedded coatings micro and nano sized capsules containing linseed oil // Progress in Organic Coatings. 2012. Vol. 75 (4). P. 292 – 300.
61. Hermas A., Al-Juaid S., Al-Thabaiti S., Qusti A., Abdel Salam M. In situ electropolymerization of conduct-ing polypyrrole/carbon nanotubes composites on stainless steel: Role of carbon nanotubes types // Progress in Or-ganic Coatings. 2012. Vol. 75 (4). P. 404 – 410.
62. Brown E., Kessler M., Sottos N. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene // Journal of Microencapsulation. 2003. Vol. 20 (6). P. 719 – 730.
63. Mallakpour S., Dinari M. Fabrication of polyimide/titania nanocomposites containing benzimidazole side groups via sol–gel process // Progress in Organic Coatings. 2012. Vol. 75 (4). P. 373 – 378.
64. Yu H., Xue C., Qin Y., Wen Y., Zhang L., Li Y. Preparation and performance of green targeted microcap-sules encapsulating surfactants // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. Vol. 623. P. 1 – 8.
65. Maravajhala V., Dasari N., Sepuri A., Joginapalli S. Design and evaluation of niacin microspheres // Indian Journal of Pharmaceutical Sciences. 2009. Vol. 71 (6). P. 663 – 669.
66. Julaeha E., Nugeraha R., Nurzaman M., Kurnia D., Wahyudi T., Rosandi Y. Characterization of ethyl cellu-lose (EC) microcapsules for lime oil encapsulation // Journal of Physics: Conference Series. 2018. Vol. 1080 (1). P. 1 – 5.
67. Rosestolato J., Perez-Gramatges A., Lachter E., Nascimento R. Lipid nanostructures as surfactant carriers for enhanced oil recovery // Fuel. 2019. Vol. 239. P. 403 – 412.
68. Xu Q., Yang Y., Lu J., Lin Y., Feng S., Luo X., Di D., Wang S., Zhao Q. Recent trends of mesoporous silica-based nanoplatforms for nanodynamic therapies // Coordination Chemistry Reviews. Vol. 469. P. 1 – 8.
69. Manzano M., Vallet-Regi M. Mesoporous silica nanoparticles for drug delivery // Advanced Functional Ma-terials. 2020. V. 30 (2). P. 1 – 13.
70. Zhang Y., Zheng S., Zhu S., Ma J., Sun Z., Farid M. Evaluation of paraffin infiltrated in various porous sili-ca matrices as shape stabilized phase change materials for thermal energy storage // Energy Conversion and Man-agement. 2018. Vol. 171. P. 361 – 370.
71. Chen F., Gong A., Zhu M., Chen G., Lacey S., Jiang F., Li Y., Wang Y., Dai J., Yao Y., Song J., Liu B., Fu K., Das S., Hu L. Mesoporous, Three-dimensional wood membrane decorated with nanoparticles for highly effi-cient water treatment // ACS Nano. 2017. Vol. 11 (4). P. 4275 – 4282.
72. Alsmaeli A., Hammami M., Enotiadis A., Kanj M., Giannelis E. Encapsulation of an anionic surfactant into hollow spherical nanosized capsules: size control, slow release, and potential use for enhanced oil recovery. Appli-cations and environmental remediation // ACS Omega. 2021. Vol. 6 (8). P. 5689 – 5697.
73. Kittisrisawai S., Romero-Zerón L.B. Complexation of surfactant/β-cyclodextrin to inhibit surfactant adsorp-tion onto sand, kaolin, and shale for applications in enhanced oil recovery processes. Part II: dynamic adsorption analysis // Journal of Surfactants and Detergents. 2015. Vol. 18 (5). P. 783 – 795.
74. Romero-Zeron L., Wadhani D., Sethiya R. Formulation of an encapsulated surfactant system, ESS, via β-CD host-guest interactions to inhibit surfactant adsorption onto solid surfaces // Industrial and Engineering Chemistry Research. 2020. Vol. 59 (35). P. 15542 – 15555.
Чекалов А.Ю., Иванова А.А., Черемисин А.Н., Абдурашитов А.С., Козырева Ж.В., Прошин П.И., Сухоруков Г.Б. Обзор ПАВ-заводнения в качестве метода увеличения нефтеотдачи и применимости технологии микрокапсулирования для повышения эффективности ПАВ-заводнения // Chemical Bulletin. 2023. Том 6. № 3. С. 28 – 47.