NICKEL IONS ADSORPTION BY THERMOMODIFIED FALLEN LEAVES OF CHESTNUT
Abstract
In recent years, the attention of researchers has been attracted by industrial and agricultural waste, which can be used as sorption materials. A special group is made up of lignocellulose-containing components of woody biomass (leaves, bark, needles, fruits, etc.) and wood processing products (sawdust, shavings, chips, etc.). Advantages of using the latter as reagents for wastewater treatment include simple technique, small processing, good adsorption capacity, selective adsorption of heavy metal ions, low cost, free availability and easy regeneration. Trees foliage attracts attention аmong the components of the woody biomass, it has a large specific surface area and falls annually under the conditions of the Russian Federation, which facilitates its collection and use.
Nickel ions are one of the most toxic pollutants that enter water bodies with industrial wastewater. The infor-mation on the nickel compounds toxic effect on living organisms is briefly presented. In this work, we studied the sorption properties of chestnut fallen leaves (CFL) in relation to nickel ions. The sorption capacity maximum value of the thermally modified CFL at a temperature of 250° C (CFL250) is 1.3 mmol / g for nickel ions. By processing the obtained isotherm within the framework of the Langmuir, Freundlich, BET, Dubinin-Radushkevich sorption models, it was found that the adsorption process is most accurately described by the Langmuir model (R2 = 0.9912). The calculated Gibbs energy is equal to -7.86 kJ / mol, it indicates the occurrence of spontaneous physical adsorption of Ni2 + ions on the CFL250 surface.
Nickel ions are one of the most toxic pollutants that enter water bodies with industrial wastewater. The infor-mation on the nickel compounds toxic effect on living organisms is briefly presented. In this work, we studied the sorption properties of chestnut fallen leaves (CFL) in relation to nickel ions. The sorption capacity maximum value of the thermally modified CFL at a temperature of 250° C (CFL250) is 1.3 mmol / g for nickel ions. By processing the obtained isotherm within the framework of the Langmuir, Freundlich, BET, Dubinin-Radushkevich sorption models, it was found that the adsorption process is most accurately described by the Langmuir model (R2 = 0.9912). The calculated Gibbs energy is equal to -7.86 kJ / mol, it indicates the occurrence of spontaneous physical adsorption of Ni2 + ions on the CFL250 surface.