Electrophilic-nucleophilic and hydrophobic properties of surface-modified metals
Abstract
The method of layering different-sized molecules of ammonium and organosilicon compounds on metals, developed at the St. Petersburg Mining University, is a promising method for hydrophobization and stabilization of the surface properties of dispersed metal materials. A comparison was made of the hydrophobicity of samples based on PMS-1 copper powder processed in pairs of modifiers in mixed or sequential modes. To provide a physicochemical substantiation of the mechanism of surface hydrophobization, quantum chemical modeling and assessment of the electrophilic-nucleophilic properties of isolated modifier molecules in the HyperChem software package, as well as their adsorption interaction with a cluster model surface in the Gaussian 09 software package, were carried out. It was established that the adsorption energy values lie in range 64–127 kJ/mol, which corresponds to the chemical interaction of ethylhydride siloxane molecules and quaternary ammonium compounds (QAC) with the metal. It has been established that samples containing modifiers with different electrophilic-nucleophilic properties in the surface layer of the metal are characterized by better hydrophobicity. Also, the key role of QAC in the hydrophobization of the surface has been established by providing a stronger heteroatomic interaction with the metal surface and the formation of a preparatory QAC sublayer for structurally similar functional groups.